Laparoscopic Transgastric versus Endoscopic Drainage of a Large Pancreatic Pseudocyst. A Case Report

Mircea Beuran1,2, Ionut Negoi1,2, Fausto Catena3, Massimo Sartelli4, Sorin Hostiuc1,5, Sorin Paun1,2

INTRODUCTION

Pancreatic pseudocysts are the most common complication of acute and chronic pancreatitis [1], with an incidence of 14.6% in acute pancreatitis and 41.8% in acute-on-chronic pancreatitis [2–5]. They account for 75% of the cystic lesions of the pancreas [6]. According to the Atlanta 2012 revised classification, the pancreatic pseudocyst is an encapsulated collection of fluid with a well defined inflammatory wall, minimal or no necrosis, which often requires for maturation more than four weeks after the onset of an acute pancreatic episode [7]. Therapeutic approach of pancreatic pseudocysts should be decided after high resolution imaging and clinical evaluation. Most pseudocysts with a diameter of less than 4 centimeters (cm) will resolve spontaneously, or will remain clinically stable without further complications. Pseudocysts with a diameter between 4 to 6 cm can be managed by watchful waiting to see if they are asymptomatic or stable on follow-up imagery [8]. These pseudocysts can resolve spontaneously, but serious complications may occur in 10% of cases [9, 10]. Pseudocysts larger than 6 cm and persistent more than 6 weeks should be managed by a percutaneous, endoscopic or surgical approach [11].

The objective of this case report is to illustrate the minimally invasive management of giant pancreatic pseudocysts.

CASE REPORT

A 37 year-old woman was admitted three months after an episode of severe acute pancreatitis with a large tumor mass in the left abdomen, abdominal tenderness and asthenia. Abdominal Computed Tomography (CT) revealed a giant pancreatic pseudocyst of 23/15/12 centimeters. We performed an anterior laparoscopic transgastric cystogastrostomy. The postoperative clinical course was uneventful, and she was discharged nine days later. After another month she was re-admitted for general malaise and fever. We performed endoscopic evaluation of the cystogastrostomy patency followed by lavage of the pseudocyst cavity. After five days of broad spectrum antibiotic therapy the clinical course started to improve and the patient was discharged after another eight days. One- and two-year follow-ups revealed no remnant cavity.

Conclusions: Laparoscopic transgastric cystogastrostomy is a feasible option for selected patients with pancreatic pseudocysts. Careful patients’ evaluation in a multidisciplinary team, including imaging specialists, dedicated gastroenterologists with experience in advanced interventional techniques and pancreatic surgeons, balancing between watchful waiting and step-up minimally invasive approach offers the best tailored approach for a specific patient.

Key words: pancreatic pseudocyst – laparoscopy – minimally invasive – acute pancreatitis.
showed a large amount of necrotic tissue inside the pseudocyst (Fig. 1).

We decided to perform an anterior laparoscopic transgastric approach, with the abdomen accessed using an open technique. After the anterior gastrotomy, the pseudocyst was punctured-aspirated through the posterior gastric wall; 2,300 ml of dark-brown fluid was aspirated. We performed a cystogastrostomy using a continuous monofilament nonresorbable suture.

The postoperative clinical course was uneventful. On the 7th postoperative day the CT scan showed a mild edema of the cystogastrostomy. The size of the pseudocyst decreased to 18/11/6 cm (Fig. 2 A). The patient was discharged after 9 days.

A month later the patient was re-admitted for general malaise and fever. Clinical examination revealed no signs of peritoneal irritation. Abdominal CT showed a remnant cavity of 11.8/7.5/5 cm (Fig. 2 B). We performed an endoscopic lavage of the pseudocyst cavity, with the tip of the endoscope through the cystogastrostomy. The patient received antibiotic therapy (Imipenem/Cilastatin, 2 g per day) for 5 days, and the clinical course was favorable. The patient was discharged after 8 days from admission.

At the one-year follow-up there was no remnant cavity on abdominal CT (Fig. 3).

At the two-year follow-up, under pharmacologic treatment of hyperlipidemia, there was no recurrence of acute pancreatitis.

DISCUSSION

We present the case of a successful minimally invasive management of a giant pancreatic pseudocyst in a young woman, three months after an episode of severe metabolic acute pancreatitis.

Therapeutic options for a pancreatic pseudocyst include surgical, endoscopic, and percutaneous drainage, which are complementary to each other rather than conflicting (Table I) [10, 11]. Nowadays, as the laparoscopic Whipple resections have become more popular worldwide, there is no doubt about the feasibility of laparoscopic approach in pancreatic diseases [13]. For pancreatic pseudocysts, the laparoscopic approach offers the same results as open drainage procedures, maintaining the known benefits of a minimally invasive approach (Table II). The initial laparoscopic transgastric technique, described by Way et al. involves the usage of three radially expandable trocars (2 of 12 mm and one of 5 mm) inserted through the anterior gastric wall [14]. This intragastric approach has as main disadvantages the lack of triangulation of the working instruments and difficult access of the pseudocyst after its evacuation [15]. For our patient we used a true laparoscopic transgastric approach. Gibson et al. described a useful method for initial puncturing of the pseudocyst in the second technique, using a radially progressive expandable trocar [15].

Khaled et al. published a case-matched comparative study of 40 patients, including 30 cases in the laparoscopy group...
and 10 cases in the open cystogastrostomy group [16]. The laparoscopic approach had a shorter operating time (62 versus 95 min, p=0.035), a lower rate of postoperative morbidity (10% versus 60%, p=0.024) and a shorter in-hospital stay (6.2 versus 11 days, p=0.038). The authors concluded that the laparoscopic approach should be preferred where relevant expertise is available [16]. A meta-analysis of 5 comparative studies, including 255 patients, published in 2015 and comparing endoscopic with surgical treatment for pancreatic pseudocysts concluded that the endoscopic approach may be the first line treatment [17]. The surgical group had a higher success rate than the endoscopic group (OR=0.43, 95%CI 0.2 to 0.95, p=0.04), with no statistical significant differences between the two groups regarding adverse events (OR=0.67, 95% CI 0.33 to 1.36, p=0.27) and recurrence rate (OR=1.53, 95% CI 0.37 to 6.39, p=0.56) [17].

Melman et al. evaluated the clinical outcomes after laparoscopic (16 patients), endoscopic (45 patients), and open (22 patients) cystogastrostomy for pancreatic pseudocysts [18]. Grade 2 or greater complications were noticed in 31.5%, 15.6%, and 22.7% in laparoscopic, endoscopic, and open group, respectively (p=0.05). The primary compared with overall success rate (defined as cyst resolution) was 87.5% versus 93.8% for laparoscopic, 51.1% versus 84.6% for endoscopic, and 81.2% versus 90.9% for the open group (p<0.05 for surgery versus endoscopy). On the other hand, primary endoscopic failures can be managed by repeated procedures, with a similar overall success rate [18].

Palanivelu et al. published their 12 years experience in management of pancreatic pseudocysts [19]. Out of 108 patients, laparoscopic cystogastrostomy was performed in 90 (83.4%) cases, laparoscopic cystojejunostomy in 8 (7.4%) cases, open cystogastrostomy in 2 (1.8%) cases and laparoscopic external drainage in 8 cases (7.4%). Two patients were reoperated for bleeding and gastric outlet obstruction [19].

In the study by Hauters et al. that included 17 cases, 2 patients were readmitted during the first 3 postoperative weeks due to secondary infection of the pancreatic pseudocyst. In the first case an early closure of the cystogastrostomy was managed by an endoscopic stent placement [20]. This scenario was very similar to our case, where endoscopic confirmation of the anastomosis patency and lavage of the pseudocyst cavity favored the pseudocyst evacuation.

The endoscopic approach is technically successful in 70–100% of cases of walled-off pancreatic fluid collections, which includes pancreatic pseudocyst and walled-off pancreatic necrosis. Tyberg et al. reported a clinical success rate between 70–100%, with a complication rate of up to 18% [21]. The success rate of an endoscopic approach is lower following acute (over 70%) compared to chronic pancreatitis (over 90%) [22–27]. In the walled-off collection that includes solid debris, the recurrence rate exceeds 30% [26, 28].

Binmoeller et al. reported 53 patients with symptomatic pancreatic pseudocysts, managed by transpapillary drainage in 33 cases, transmural drainage in 20 cases, and by a combined approach in the remaining 4 cases [29]. The mean diameter of the pseudocysts was 7 cm, in 92% of cases the cause being chronic pancreatitis. Complications occurred in 11% of cases, after a mean follow-up of 22 months [29]. In patients with a pancreatic duct disruption that could be bridged, transpapillary pancreatic duct stenting improved outcomes in patients with endoscopic transmural drainage of peripancreatic fluid collections [30]. Trevino et al. reviewed 110 patients with endoscopic transmural pancreatic fluid collection drainage (62% pseudocysts), in 40 (36%) patients being added a simultaneous pancreatic duct stenting [30]. Even after multivariable analysis, the patients with a pancreatic duct stenting were significantly more likely to have a treatment success (risk ratio 1.14, 95% confidence interval: 1.01-1.29, p=0.0036).

In Table I: Comparison of different interventional techniques addressing pancreatic pseudocysts [35–39].

<table>
<thead>
<tr>
<th>Therapeutic option</th>
<th>Percutaneous drainage</th>
<th>Endoscopic drainage</th>
<th>Laparoscopic surgical drainage</th>
<th>Open surgical drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid collection resolution success rate</td>
<td>70-80%</td>
<td>92%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrence rate</td>
<td>70%</td>
<td>10-15%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>0.2%</td>
<td>0%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Complications</td>
<td>10-15%</td>
<td>9%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Pancreatic fistula</td>
<td>>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A randomized controlled trial compared 20 patients treated with endoscopic cystogastrostomy and 20 patients treated surgically [31]. After a follow-up of 24 months none of the patients from the endoscopic group had a recurrence, compared to one from the surgical group. There were no differences in the treatment outcome, complications, or re-interventions between the groups. Patients from the endoscopic group had a shorter hospital stay (2 versus 6 days, p=0.001) and lower costs ($7011 versus $15,052, p = 0.003). A major drawback of this study is that all surgical interventions were performed using an open approach, even though laparoscopy is a more suitable competitor for endoscopic drainage [32]. On the other hand, this paper did not present the cause of the pseudocysts (acute versus chronic pancreatitis) and diagnosed the pseudocysts using CT. It should be noted that CT can detect necrotic debris in only 22% of cases, compared with 89% for MRI [33]. In our case, one of the most powerful indications for a surgical approach was the large amount of necrotic debris inside the fluid collection. In patients with walled-off pancreatic fluid collections that include debris, nasocystic drain improves clinical outcomes compared to stents only [34]. Siddiqui et al. compared 63 patients with nasocystic stents alongside stents with 24 patients with transmural stents, in all cases solid debris being present inside the pancreatic pseudocysts [34]. The short-term success rate was three times greater for patients with both nasocystic tube and stents (p=0.03). After a follow-up of 12 months, complete resolution was significantly higher in the combined group (79% versus 58%, p=0.059), and the stent occlusion was significantly lower (13% versus 33%, p = 0.03).

CONCLUSIONS

Laparoscopic transgastric cystogastrostomy is a feasible option in selected patients with pancreatic pseudocysts. Careful patients evaluation in a multidisciplinary team, including imaging specialists, gastroenterologists with experience in advanced interventional techniques and pancreatic surgeons, balancing between watchful waiting and a step-up minimally invasive approach offers the best tailored approach for a specific patient.

Conflicts of interest
None to declare.

Table II. Laparoscopic approach in patients with pancreatic pseudocysts, series including more than 10 patients

<table>
<thead>
<tr>
<th>Study/Location</th>
<th>Number of patients</th>
<th>Success rate</th>
<th>Postoperative complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palanivelu et al./India</td>
<td>108</td>
<td>98 (91%)</td>
<td>9 (8%)</td>
</tr>
<tr>
<td>Gibson et al./UK</td>
<td>36</td>
<td>100%</td>
<td>1 (2.7%)</td>
</tr>
<tr>
<td>Hamza et al./UK</td>
<td>28</td>
<td>26 (92.9%)</td>
<td>1 (3.3%)</td>
</tr>
<tr>
<td>Park & Heniford/USA</td>
<td>28</td>
<td>27 (96%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Mori et al./Japan</td>
<td>17</td>
<td>14 (82%)</td>
<td>3 (18%)</td>
</tr>
<tr>
<td>Hauters et al./Belgium</td>
<td>17</td>
<td>16 (94%)</td>
<td>2 (12%)</td>
</tr>
<tr>
<td>Hindmarsh et al./UK</td>
<td>15</td>
<td>12 (80%)</td>
<td>2 (13%)</td>
</tr>
</tbody>
</table>

Authors’ contributions
M.B.: conception and design of the study, critical revision; I.N.: data acquisition, analysis and interpretation, manuscript drafting; F.C. and M.S.: interpretation of data, manuscript revision; S.H.: data acquisition, manuscript revision; S.P.: data interpretation, manuscript revision. All authors gave their approval for the final version of the manuscript.

REFERENCES