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ABSTRACT

Background & Aims: Despite some recent advances, gastric cancer remains an important cause of death at
world level. This indicates an absence of therapeutic options, stemming from the limited understanding of
the molecular mechanisms involved in carcinogenesis. Nearly fifty years ago Lauren classified gastric cancers,
according to the morphological aspect, as intestinal or diffuse. The phenotype of the cells indicates the presence
of different molecular mechanisms, which can be approached in the light of recent data and identified with the
help of current techniques. The best described are the germline/somatic mutations or the hypermethylations
of the E-cadherin 1 CDHI gene promotor.

Methods. We analyzed 195 gastric tumors,120 intestinal and 75 diffuse type, using immunohistochemistry
(tissue microarray TMA method) for pStat3™7%, E-cadherin, a-catenin and B-catenin; 985 spots of gastric
tumors, distributed on 4 TMA blocks were analyzed. For pStat3™7% we took the nuclear staining into account
and for the adhesion molecules, membrane staining.

Results. In our study, in the diffuse type gastric cancer, pStat3™7% nuclear expression was statistically
significantly increased (p=0.003). Also we observed a decreased expression of the adhesion molecules in the
same type of gastric cancer (E-cadherin p<0.0001, a-catenin p<0.0001, f-catenin p<0.0001), suggesting that
epithelial-to-mesenchymal transition (EMT) may be involved not only in gastric carcinogenesis, but also in
resistance to treatment.

Conclusion. The Stat3 role has been recently highlighted in carcinogenesis of the diffuse type of gastric
cancer. We found that the morphological features of the diffuse type also suggest the involvement of EMT in
this type of gastric cancer. Therefore, targeting the key molecules involved in this process may interfere with
EMT process in the diffuse type of gastric cancer.

Key words: gastric cancer — Stat3 — adhesion molecule — EMT.

Abbreviations: CDH1: E-cadherin 1; EMT: epithelial-to-mesenchymal transition; STAT 3: signal transducer
and activator of transcription 3

INTRODUCTION

proving a still limited understanding of the molecular
mechanisms involved in gastric carcinogenesis [2]. According

Gastric cancer is a major
health problem worldwide; the
mortality of patients with this
type of tumor is second only
to lung cancer [1]. In recent
years, new targeted drugs
were synthesized in order to
inhibit molecules involved in
gastric carcinogenesis, such
as HER2 and c-Met. Despite
these advances, survival rates
at 5 years remain under 30%,

to the morphological features, Lauren’s and also more
recently the WHO classification distinguish two types of
gastric adenocarcinoma, intestinal (with a papillary, tubular
and mucinous architecture) and diffuse (poorly cohesive
carcinoma), the latter being usually associated with lower
survival rates [3]. These morphological differences indicate
the presence of different molecular mechanisms (mutations
of p53, PTEN, PIK3CA, ARIDIA genes and amplifications
of HER2 oncogene), of which the best described are the
germline/somatic mutations or the hypermethylations of
the CDHI gene, encoding adhesion molecule E-cadherin
[4-6]. Attempts have been made to identify new subgroups

] Gastrointestin Liver Dis, March 2015 Vol. 24 No 1: 77-83



78

Susman et al

on the basis of new molecular data, which partially overlap
the classical histopathological classification based upon the
morphological features of tumor cells [7]. Studies published
over the last few years have described the involvement of the
signal transducer and activator of transcription 3 (STAT3) in
various types of tumors, including gastric cancer [8-12]. The
activation of Stat3 involves a less favorable prognosis and a
more limited response to treatment [16-18]. As a transcription
factor, STAT3 acts by controlling the expression of some genes
that regulate the cellular cycle or inhibit apoptosis, such as
Bcl-2, Mcl-1, survivin, p53, c-Myg, cyclin D1, through a
transduction pathway leading to an activated phosphorylated
state which allow STAT3 the translocation into the nucleus
[13-15]. A recent study indicates the involvement of Stat3 in
the epithelial-to-mesenchymal transition (EMT) by way of a
mechanism that leads to the nuclear localization of Snail, a
transcriptional repressor for E-cadherin 1 (CDH1). This causes
a change in the cellular phenotype, as the cells become round,
loose intercellular contact and acquire invasive capabilities
[19]. The involvement of Stat3 in EMT, followed by an increased
invasion and metastasis of tumor cells, has been reported in
cases of breast and prostate cancer [20-22].

Starting from the particular morphology of the diffuse
type, with poorly differentiated, small, round, dissociated
cells, but also from the data in the literature which suggest that
an EMT process is present in this type of gastric cancer, we
sought to perform an immunohistochemical assessment of the
expression of activated form of STAT3 (pStat3™7%) and also
of the adhesion molecules E-cadherin, a and B-catenin, in the
two main types of gastric cancer defined by Lauren.

MATERIAL AND METHOD

Patients

Tumor fragments from 195 patients suffering from gastric
cancer were retrieved from the archives of the pathology
departments at the Gustave Roussy Institute of Oncology
(Paris, France), Montpellier Cancer Institute (Montpelier,
France), Ion Chiricuta Oncology Institute (Cluj Napoca,
Romania) and La Sapienza University Hospital of Rome (Rome,
Italy). Prior to the construction of the tissue microarray blocs,
the cases were independently reviewed by two pathologists
called upon to confirm the diagnosis of intestinal or diffuse
gastric cancer according to the Lauren classification. None
of the patients had received pre-operative chemotherapy.
We examined the medical records of each patient in order to
determine gender, age, tumor size, the number of metastasizing
lymph nodes and the presence of metastases.

Construction of tissue microarray blocs

This was done with the help of a manual tissue microarrayer
(Beecher Instruments®, MD, USA). Four cores (0.6 mm in
diameter, 4 mm in length) were extracted for each patient’s
formalin fixed paraffin embedded block. The cores featured
the optimum number of tumor cells [minimum 60%], as the
areas rich in stroma or with necrosis had been avoided. Several
cores coming from a healthy gastric mucosa were inserted into
the tissue blocks, allowing us to assess the sensitivity and the
specificity of the antibodies employed.

] Gastrointestin Liver Dis, March 2015 Vol. 24 No 1: 77-83

Immunohistochemistry

The immunohistochemical staining tissue sections (4 pm)
were deparaffinized in xylene (3x15 minutes) and rehydrated
in a graded series of ethanol (3x10 minutes). The activity of
endogenous peroxidases was blocked through incubation with
hydrogen peroxide [0.3%] in methanol at room temperature
(2x15 minutes). After rinsing in tap water, the antigen retrieval
was completed in microwaves (pH 7), 15 minutes at 750W and
then 15 minutes at 150W. The immunohistochemical stain was
performed using the following dilution for primary antibodies:
1:50 for pStat3™7% (Cell Signaling Technology® MA, USA),
1:50 for E-cadherin (BD Transduction Laboratories™ CA,
USA), 1:50 a-catenin (Life Technologies™ NY, USA) and 1:50
B-catenin (Life Technologies™ NY, USA). The visualization of
antibodies was made using the Envision DAKO® technique:
after applying the primary antibodies at the indicated dilutions
(1 hour at room temperature), we applied the secondary
antibody Envision/HRP (45 minutes), followed by the
application of Streptavidin in conjugation with peroxidase (45
minutes). The counterstaining of slides was done with Mayer’s
hematoxylin, and then they were rinsed, dehydrated in graded
ethanol followed by xylol and mounted.

The immunohistochemistry interpretation

We assessed the percentage of tumor cells (0-100%).
The immunomarking was classified according to location
(membrane, nucleus, or cytoplasm) and intensity (absent,
poor, moderate, intense). The slides were independently read
by two pathologists. In the case of divergent results, the slides
were reviewed by both pathologists working together, and an
agreement was reached.

Statistical analysis

The statistical analysis was conducted using the Student ¢
test. P-values of <0.05 were regarded as statistically significant.
The data were analyzed using Prism 5.0b (GraphPad Software
Inc., La Jolla, CA, USA) and Microsoft Excel 2008 (Version
12.1.9; Microsoft Corporation, Redmond, WA).

RESULTS

The studied population included 195 patients, of whom
75 suffered from gastric adenocarcinoma of the intestinal
type and 120 of the diffuse type. Eighty four were women and
111 were men, the average age being 68 years (range 30 to 89
years). The size of the tumor, the number of metastasized lymph
nodes and the presence or absence of distant metastases are
shown in Table 1.

We analyzed 985 spots distributed on 4 TMA slides. For
pStat3™7% we took into account only the nuclear marking
(Fig.1), and for the adhesion molecules (E-cadherin,
a-cadherin, B-cadherin) we took into account the membrane
marking (Figs. 2-4). pStat3™7% was mainly expressed in diffuse
type of gastric cancer (median 31.2, and the standard deviation
41.2), leading to a statistically significant value (p=0.003). For
the adhesion molecules the expression was decreased in the
same type of gastric tumor: E-cadherin — median 62.0, standard
deviation 54.5 and p<0.0001; a-catenin — median 38.1, standard
deviation 46.3 and p<0.0001; B-catenin — median 47.9, standard
deviation 47.1 and p<0.0001 (Table II).
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Table I. Pathological characteristics of the
195 studied patients with gastric cancer.

T 1 15 (7.72%)
2 80 (40.9%)
3 51 (26.4%)
4 49 (25.4%)

N 0 41 (21.2%)
1 73 (37.3%)
2 45 (22.8%)
3 33 (17.1%)
x 3 (1.55%)

M 0 94 (48.2%)
1 45 (23.3%)
2 56 (28.5%)

T: tumor; N: node; M: metastasis

pStat307% expression in intestinal and diffuse type of gastric
adenocarcinoma. The expression is nuclear in tumor cells of
diffuse type, weak citoplasmatic in normal glands (Fig. 1A) and
tumor cells of intestinal type (Fig. 1B). E-caderin is diferently
expressed in the two types of gastric cancer, as seen in Figs.
2 A,B. Alpha-catenin expression is increased in intestinal
type compared with the diffuse type, as shown in Figs. 3 A,B.
Beta-catenin has a weak expression in the diffuse type and a
strong membranary positivity for intestinal type, according
to Figs. 4 A,B.

B aelinia
Fig. 1. pStat3™7% expression in normal glands (A) and
tumor cells of intestinal type (B) (x10).

Table II. Markers’ expression in intestinal and diffuse type of gastric cancer.

Diffuse type Intestinal type p value
75 patients 120 patients (T test)

Median ~ Standard Median  Standard

deviation deviation

pStat3™70s 31.2 41.2 14.1 33.0 0.003
E-cadherin 62.0 45.4 99.2 9.1 <0.0001
a-cadherin 38.1 46.3 98.3 12.9 < 0.0001
B-cadherin 47.9 47.1 95.5 19.1 <0.0001
DISCUSSION

In our study, we highlighted the statistically significant
difference of expression for pStat3™7* and also for the adhesion
molecules (E-cadherin, a and - catenin) in the intestinal and
diffuse type of gastric cancer. The genetic programs involved
in the normal development are highly preserved, and their
abnormal activation can be responsible for the occurrence
and progression of malignancies [22-24]. Epithelial-to-
mesenchymal transition is essential for embryonic development
and tissue remodeling, but also for tumor invasion, metastasis
and treatment resistance [25]. From a molecular point of view,
the hallmark of EMT is the decreased E-caderin expression and
the activation of transcription factors such as SNAIL, SLUG,
TWIST1, and also STAT3 [26, 27]. The interaction between
the aforementioned transcription factors can also be found
within malignancies, as they are involved in the generation
and the progression of the tumor [28-31]. These molecular
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Fig. 2. E-Cadherin expression in the two types of gastric
cancer (intestinal, A and diffuse, B) (x10).
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B

Fig. 3. Alpha-catenin expression in the intestinal type
(A) and the diffuse type (B) (x10).

events are reflected in the cell phenotype, the transition from
an epithelial phenotype to a mesenchymal one leading to a
decrease in the expression of adhesion molecules, to a loss
of cellular adhesion, of polarity, followed by the detachment
of cells that acquire invasive properties, just as in the case of
diffuse gastric carcinoma [32].

The involvement of Stat3 in gastric carcinogenesis has been
described, but the precise mechanism is yet to be determined
[33-37]. In vitro studies have revealed the role played by Stat3 in
cell proliferation, motility and invasiveness [38-40]. Similarly,
in vivo animal studies have highlighted the fact that Stat3 has
an important role to play in gastric tumorigenesis [41-43].
STATS3 activation is made by tyrosine phosphorylation at the
single site (Y705) and is mediated by a Janus kinase. This is
required for the Stat3 dimerization, nuclear translocation,
and the DNA binding. The study of JAK and STAT knockout
animals suggests that the JAK-STAT signaling pathway is
important for development although not all the JAKs and
STATs are equally essential. All the STAT genes and proteins
have been located in bone tissues. Among the seven STATS,
only STAT5A and STAT5B knockout mice show obviously
defective development [30-32]. STAT5A and STATS5B are
functionally quite pleiotropic. Biochemical and genetic studies
have underscored the important role that STAT5A and STAT5B
plays in directing a biological response to the IL-3 (IL-3, IL-
5, and granulocyte-macrophage colony-stimulating factor),
single-chain (e.g., growth hormone, prolactin, thrombopoietin,
and erythropoietin), and yc (i.e., the IL-2, IL-7, IL-9, IL-15,
and possibly IL-21) receptor families. The extensive sequence
similarity between STAT5A and STAT5B (~96% amino acid
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B

Fig. 4. Beta-catenin expression in the intestinal type (A)
and the diffuse type (B) (x10).

identity) explains their functional redundancy. But, the
responses to prolactin and growth hormone favor STAT5A
and STAT5B, respectively. STAT3 regulates cell respiration
in mitochondria besides its action on gene transcription
via binding specific gene-promoter sequences in nucleus.
Without STATS3, for instance, an electron transport chain in
mitochondria is inhibited leading to accumulation of reactive
oxygen species (ROS) in adult cells. Clinical evidence suggests
interplay between oxidative stress and carcinogenesis. One
reason is that oxidative stress antagonizes wnt signaling.
Wnt molecules, on the other hand, have an anabolic effect
on tissue formation. Future research includes identification
of downstream genes affected by JAK-STAT pathway in
adult cells. The STAT3 signaling upregulates the expression
of receptor activator of nuclear factor kB ligand (RANKL) in
cells, suggesting that the IL-6-gp130-STAT3 signal regulates
the differentiation indirectly. However, the role of STAT3
in vivo has not been elucidated. This can be achieved using
a conditional knockout mouse model in which STAT3
inactivation occurs specifically in the malignant cell. IL-6, one
of the main chemokines present in patients serum, promotes
EMT by repressing E-cadherin expression via the JAK/STAT3/
Snail signaling pathway.

Using immunohistochemistry, we highlighted a difference
in the nuclear expression of pStat3™7% between the two types
of gastric cancer in the Lauren classification, intestinal and
diffuse. This difference in expression was correlated with
that of the adhesion molecules E-cadherin, alpha and beta
catenin, typical for the cells undergoing EMT. Few studies
have analyzed the immunohistochemical expression of
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pStat3™7%, and it has been recently reported that a difference
in the expression of pStat3™7% correlates with the degree of
tumor differentiation (I/II versus III/IV]), the TNM stage,
and survival [44]. The same study indicates that STATS target
the genes involved in the signaling pathways MAPK and
mTOR, but also in Wnt, which is known to be involved in the
preservation of an undifferentiated cell phenotype in normal
and pathological conditions. On the other hand, in a recent
study which correlates the immunohistochemical expression
with the clinical-pathological parameters, Lee et al. have found
a correlation between pStat3™7% expression and survival, but
this value remained statistically irrelevant when comparing the
intestinal and the diffuse type [45]. The unphosphorilated Stat3
evaluation seems not to be prognostically relevant, as another
study has failed to identify a statistically significant difference
in survival for the positive and the negative STAT3 groups [46].
Another immunohistochemical study has found a significant
correlation between early and advanced gastric cancers, but
has not identified a difference between the intestinal and the
diffuse types, the latter being positive for a small number of
cases [47].

Although in vitro studies conducted on animal models
indicate the important role of Stat3, the immunohistochemical
evaluation and its correlation with clinical-pathological
factors require considerable caution. The evaluation of the
nuclear expression of the activated form (phosphorylated at
Tyr705) is the only one that correlates between the degree of
differentiation and the clinical evolution of patients. In our
study, the comparison between the intestinal and the diffuse
type has highlighted a difference for pStat3™7%. The more
significant expression of pStat3™7% at the level of the cells
molecularly characterized by a low expression of adhesion
molecules suggests that Stat3 acts by way of a mechanism
associated with the EMT process. This can account for the data
obtained in vitro for Stat3 regarding the increase in survival,
in resistance to treatment, proliferation and invasiveness,
all associated with a loss of the epithelial phenotype,
dedifferentiation, leading to the so-called stem-like status. This
is corroborated by the involvement of Stat3 in EMT during
embryogenesis, but also in tumor processes [23, 24].

Studies conducted in vitro on hepatocellular carcinoma
cells, non-small cell lung cancer cells, cisplatin-resistant
ovarian cancer cells, but also on squamous cell carcinoma
of the esophagus, have indicated that blocking the activated
Stat3 inhibits the EMT and might be a therapeutic alternative,
leading to a better response to treatment and survival [48-51].
In the case of gastric cancer, the involvement of STAT3 in the
resistance to treatment has been reported in the literature
[52-56]. Furthermore, this resistance is associated with the
activation of Stat3 and EMT [19, 57]. The molecular interaction
of STAT3 and Snail, ZIP6, and also the other transcription
factors suggests that it is part of a core that controls EMT
in normal and pathological conditions [58, 59]. These data
highlight the central role of STAT3, which could suggest that it
could be a therapeutic target, its inhibition leading to a decrease
in the main characteristics of tumor cells: proliferation,
motility, invasion and upregulation of apoptosis. Today, there
are a number of STAT3 inhibitors, such as the oligonucleotide
decoy, antisense oligonucleotide or small molecules that are

currently in clinical development [60, 61]. According to our
study, pStat377% is involved in the genesis of the diffuse type
of gastric cancer. Its activation through phosphorylation could
be blocked at the level of Tyr705, with consequences upon the
cell phenotype.

CONCLUSION

In the case of gastric cancer, the morphological features
of the cells help us to identify some of the molecules involved
in carcinogenesis. The immunohistochemical comparison
between the intestinal and the diffuse types has shown a
significant difference for pStat3™7%, E-cadherin, alpha and
beta-catenin, suggesting the key role of EMT in carcinogenesis,
so that targeting these key molecules involved in this process
could be a therapeutic alternative.
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