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INTRODUCTION

Nearly 50 years have passed 
since President Nixon declared 
war on cancer [1]. Although 
momentous achievements have 
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ABSTRACT

Molecular predictive biomarkers represent an essential tool for the future of personalized oncotherapy. Gastro-
entero-pancreatic neuroendocrine neoplasms are a heterogeneous group of epithelial tumors with a steady 
increase in incidence and prevalence. Their effective management depends on early diagnosis, personalized 
risk stratification, and monitoring response to therapy. A crucial element is identifying accurate biomarkers to 
predict/monitor therapeutic responses, assess drug resistance, and quantify residual disease in a reproducible 
and less invasive way. Taking into consideration their role in cell differentiation, cell proliferation, apoptosis 
and tumor development, microRNAs have gained interest as potential prognostic markers and treatment 
response predictors in neuroendocrine neoplasms. This review is the first to summarize the available data 
on the possible role of microRNAs in evaluating the efficacy of somatostatin analogs treatment in gastro-
entero-pancreatic neuroendocrine neoplasms. Although the literature is scarce, the let-7 family targeting 
phosphoinositide 3 kinase – protein kinase B 1 – mammalian target of rapamycin signaling pathway might 
represent a promising biomarker with potential clinical benefit, but further research is required before 
their eventual clinical application. Furthermore, the ambiguous molecular mechanisms of neuroendocrine 
proliferation and the undefined signaling pathway of somatostatin analogs should encourage future research 
in this field that may lead to a different clinical approach to neuroendocrine disease. 
 
Key words: neuroendocrine neoplasms − somatostatin analogs – microRNAs – predictive biomarker – let-7 
family.

Abbreviations: AKT: protein kinase B; BACH1: transcription factor BTB and CNC homology 1; cAMP: cyclic 
adenosine monophosphate; cGMP: cyclic guanosine monophosphate; EGF: epidermal growth factor; EGFR: 
epidermal growth factor receptor; EMT: epithelial-mesenchymal transition; GEP-NENs: gastro-entero-pancreatic 
neuroendocrine neoplasms; GH: growth hormone; HMGA2: high mobility group A2; HOXA9: homeobox 
protein A9; HOXB7: homeobox protein B7; IGF1: insulin-like growth factor; IGF1R = insulin-like growth 
factor receptor; IGFBP-7: insulin-like growth factor binding protein 7; IRS1: insulin receptor substrate 1; 
IRS2: insulin receptor substrate 2; LRP4: low-density lipoprotein receptor-related protein 4; MAPK: mitogen-
activated protein kinase; miRNAs: microRNAs; miRs: microRNAs; MMP1: matrix metalloproteinse-1; mTOR = 
mammalian target of rapamycin; mTORC1: mammalian target of rapamycin complex 1; mTORC2: mammalian 
target of rapamycin complex 2; NEN: neuroendocrine neoplasm; NF-kB: nuclear factor kappa-light-chain-
enhancer of activated B cells; PDK1: phosphoinositide-dependent kinase 1; PI3K: phosphoinositide 3 kinase; 
PI3KCD: phosphatidylinositol -4,5-biphosphate 3 kinase catalytic subunit delta; PIP 3 -phosphatidylinositol 
(3,4,5)–triphosphate; PTP: protein tyrosine phosphatases; pNEN: pancreatic NEN; RSPO2: roof-plate specific 
spondin-2; SI-NEN: small intestinal NEN; SSAs: somatostatin analogs; SST: somatostatin; SSTR: somatostatin 
receptor; TSC1: tuberous sclerosis complex 1; TSC2: tuberous sclerosis complex 2; WNT: wingless-type MMTV 
integration site family; WNT2B: wingless-type MMTV integration site family, member 2B; ZEB1: zinc finger 
E-box binding homeobox 1; ZEB2: zinc finger E-box binding homeobox 2. 

been made in understanding carcinogenesis, struggles still 
exist when transposing this new, valuable information into 
clinical practice. Genetic and epigenetic alterations that lead to 
carcinogenesis occur at various levels, from depletion or gain 
of an entire chromosome to dysregulating a single microRNA 
that controls hundreds of genes. 

REVIEW
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Gastro-entero-pancreatic neuroendocrine neoplasms 
(GEP-NENs) represent a heterogeneous group of epithelial 
tumors arising from neuroendocrine cells of the digestive tract. 
With a steady increase in prevalence and incidence [2-5], they 
now hold second place in prevalence among gastrointestinal 
tumors (after colon cancer) [6]. The prognosis and survival 
of patients diagnosed with GEP-NENs are influenced by the 
location of the primary neoplasm, functional status of the 
patient, tumor differentiation and stage, as well as treatment 
response [7]. All GEP-NENs have malignant potential and 
actually, most patients have metastatic disease at diagnosis. 
However, the molecular mechanisms linking neuroendocrine 
proliferation and tumor progression are not yet fully 
understood. The histopathologic diagnosis remains the gold 
standard and the surgical resection is the first choice treatment, 
but it depends on size, location and secondary disease. As most 
patients are diagnosed with advanced forms and the recurrence 
rate is high, surgery can rarely be curative. Targeted medical 
treatments for cytoreduction are limited with most of them 
being palliative as well [8]. One of GEP-NENs’ key features 
is somatostatin receptor (SSTR) expression [9]. This makes 
them targets for therapy with somatostatin analogs (SSAs), 
which have been demonstrated to exert both antisecretory and 
antiproliferative effects [7]. 

Besides correct diagnosis and prompt treatment, a crucial 
measure in the management and monitoring of GEP-NENs is 
identifying a biomarker that may be able to predict response to 
SSAs therapy, peptide receptor radionuclide therapy or detect 
recurrence after surgery. Thus far, no predictive molecule has 
been found [9]. Among recent diagnostic, prognostic and 
predictive biomarkers, microRNAs (miRNAs/miRs) could 
play a major role in monitoring GEP-NENs. 

The purpose of this review is to summarize the existing 
information on miRNAs and their role in monitoring 
treatment with SSAs in GEP-NENs. We distinctively focused 
on identifying those miRNAs which may serve as predictive 
biomarkers in GEP-NENs and may be, thus, helpful in matching 
targeted therapies with patients. Exploring and understanding 
their mechanism of action was another  objective of the paper.

Somatostatin and somatostatin analogs - an overview
S omatotropin  re le as e- inhibit ing  hor mone  or 

somatostatin (SST) is a very important endocrine regulator 
of neurotransmission and secretion. Somatostatin has two 
active forms, one consisting of 14 amino acids and the other 
consisting of 28 amino acids. It is predominantly found in the 
peripheral and central nervous system, in the gut and in the 
endocrine pancreas [10]. Apart from its inhibitory functions 
(the inhibition of pituitary hormones [11, 12], the regulation 
of gastrin and gastric acid secretion [13] and the inhibition of 
other hormones in the gastrointestinal tract and pancreas [14-
17]), SST can also control cell growth and tumor development 
[18]. Furthermore, it seems to exert anti-inflammatory and 
anti-nociceptive effects [19].  

These effects depend in part on the type of SSTRs expressed 
on the cell’s surface [7]. Somatostatin acts through binding to 
five different G protein-coupled membrane receptors: SSTR1 
to SSTR5, of which SSTR2 presents with 2 isoforms: SSTR2a 
and SSTR2b [20, 21]. The receptors are widely, but varyingly 

distributed throughout all tissues in the human body. Moreover, 
SSTRs are also expressed in human cancers, including GEP-
NENs, with characteristic receptor profiles being described in 
certain tumors. However, the SSTR profiles vary considerably 
between tumor types and also between tumors of the same 
type, with 70-90% of GEP-NENs most frequently expressing 
SSTR2, followed by SSTR5 [22-24].  

A multitude of intracellular pathways following activation 
of the SSTRs have been described [7]. Inhibition of exocytosis, 
therefore the antisecretory function, is possible by altering 
the levels of second messengers, such as cyclic adenosine 
monophospate (cAMP) or by activating ion channels, and thus 
altering intracellular calcium levels. The antiproliferative role 
is exerted directly by inducing cell cycle arrest or apoptosis 
or by inhibiting the release of growth factors and indirectly 
by inhibition of angiogenesis [18, 19]. It seems that SSTR2 
and SSTR3 were related to increased apoptosis, SSTR1 and 
SSTR2 to suppressed cell migration and invasion while all 
five receptors were related to reduced cell proliferation [25]. 
Actually, all five SSTRs can induce cell cycle arrest by activating 
the protein tyrosine phosphatases (PTPs) and subsequent 
modulation of different intracellular second messengers and 
pathways including cyclic guanosine monophosphate (cGMP) 
(SSTR2 and SSTR5), mitogen-activated protein kinase (MAPK) 
(SSTR1, SSTR2, SSTR4, SSTR5) and/or phosphoinositide 3 
kinase – mammalian target of rapamycin (PI3K–mTOR) or 
PI3K– nulear factor kappa-light-chain-enhancer of activated 
B cells (NF-kB) (SSTR2, by binding to PI3K’s p85 part) [25]. 
Of these, the PI3K pathway, in particular, is known to work as 
a signal transduction mediator in GEP-NENs [26].  Activation 
of PTPs also results in inhibition of IGF-1 receptor (IGF1R) 
signaling (SSTR1–SSTR5) (and probably also of other receptors 
such as insulin receptor) [25]. 

These SSTR properties form the molecular basis for 
various clinical applications, including symptomatic therapy in 
hormone-secreting GEP-NENs, in vivo diagnostic examination 
with Octreoscan to evaluate the extent of the disease, and  
90Y-DOTA, Tyr3-octreotide (90Y-DOTATOC) radiotherapy 
[26]. However, because of SST’s incredibly short half-life 
(approximately 3 minutes), synthetic compounds have been 
developed [8]. If the natural ligands of SSTR1-5 (SST-14, SST-
28 and cortistatin) are bound to these receptors with a high 
affinity, the synthetic peptide analogues, specifically Octreotide 
(MS201-995), Vapreotide (RC-160), Lanreotide (BIM 23014) 
and Seglitide (MK 678), however, demonstrate a variable 
affinity for SSTR, binding mostly to SSTR2 and showing lower 
affinity for SSTR5 [27]. By contrast, Pasireotide (SOM 230), a 
novel multireceptor-targeted SST displays a broader spectrum 
and additionally binds SSTR 1, 3, and 5 [27]. The preclinical 
data gave rise to the hope that Pasireotide represents a more 
effective antiproliferative tool in the treatment of patients with 
NENs but results from clinical trials have, so far, not been as 
positive as expected [7]. Nevertheless, with more than thirty 
years of gathered information [28], SSAs have confirmed their 
role in GEP-NENs’ treatment, mitigating symptoms linked with 
functioning tumors – PROMID study [29], as well as inhibiting 
tumor growth – CLARINET study [30],  although the exact 
underlying mechanisms of action of the SSAs and the signaling 
pathway targeted by this therapy need to be further clarified. 
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MicroRNAs in human pathology
MicroRNAs are part of a family of short, non-

coding RNAs (less than 30 nucleotides) that act post-
transcriptionally, inhibiting translation of or degradation 
of messenger RNA. In essence, the role of miRNAs is to 
optimize gene expression involved in cell differentiation, 
cell proliferation, apoptosis and tumor development [31]. It 
appears that 60% of protein-encoding genes are controlled 
by miRNAs, with one miRNA being able to influence the 
transcription of several genes, and with one gene being 
influenced by various miRNAs [32, 33]. 

The dysregulation of miRNAs is a hallmark of 
human pathology. Diabetes, cardiovascular, lung, kidney, 
neurodegenerative diseases, polycystic ovary syndrome, all 
express aberrant miRNAs [34-36]. Several studies appraised 
miRNAs as biomarkers for neoplastic disease and explored 
their role as predictors of treatment response [37-39]. 
The specific miRNA expression pattern was described in 
hematological cancer [40], lung cancer [41], prostate cancer 
[42], gastrointestinal cancers [43-45] to name a few. While 
a subset of these miRNAs are overexpressed in cancers and 
have shown to target tumor suppressor genes, hence termed 
oncogenic miRNAs or oncomiRs, other miRNAs that target 
oncogenes are underexpressed in cancers and are often 
called tumor-suppressor-like miRNAs [46]. Certain miRNAs 
are known to have a dual role, both oncogenic and tumor-
suppressive, depending on the cancer-specific context [47, 48]. 
Dysregulation of miRNAs has been reported to be involved in 
the pathogenesis of NENs, as well [31, 49-51]. 

Gastro-entero-pancreatic neuroendocrine neoplasms 
and microRNA dysregulation

Altered expression levels of miRNAs were determined 
in NENs of the lung, thyroid and prostate [51-54] as well 
as in insulinomas [55]. The scarcity and diversity of GEP-
NENs have led to a small number of studies that evaluate 
miRNA expression pattern in this disease. Both upregulation 
and downregulation of microRNAs have been observed in 
GEP-NENs, but the lack of concordance of the study designs 
and methods and the heterogeneous, sometimes even 
conflicting results, indicate that their role in neuroendocrine 
carcinogenesis still needs to be consolidated. In addition, 
most studies provide tissue based results, the ones evaluating 
circulating miRNAs come in short. Nevertheless, let-7 family, 
along with miRNA-7, miRNA-148, miRNA-96, miRNA-196, 
miRNA-21, miRNA-133, miRNA-125 and miRNA-375 are 
the most frequently found to be dysregulated and seem to be 
promising biomarkers. The main findings identified regarding 
pancreatic and GEP-NENs (without a certain separation 
between the segments of the digestive tract) are presented 
in Table I, whereas the ones regarding the NENs of the small 
intestine are summarized in Table II. Two studies evaluated 
miRNA expression pattern in rectal and colorectal NENs. 
The first one singled out 10 miRNAs that were associated 
with lymphovascular invasion in rectal NENs, with miRNA-
885-5p being the most up-regulated [56]. Wang et al. [57] 
identified miRNA-186 to be significantly downregulated when 
comparing blood, tumor and stool samples from colorectal 
NEN patients with healthy controls. 

Table I. MicroRNA dysregulation in gastro-entero-pancreatic neuroendocrine neoplasms

Reference miRNA Dysregulation Observations

Roldo et al. 2006 
[58]

miR-103, miR-107 ↑ Discriminated between pancreatic tumor tissue and normal 
pancreatic islets.

miR-155

↑

miR-204 ↑ Singled out insulinomas when compared to nonfunctioning tumors.

miR-21 ↑ Associated with tumor proliferation and metastasis.

miR-99a, miR-99b, miR-100, miR-125a,
miR-125b1, miR-125b2, miR-129-2, 
miR-130a, miR-132, miR-342

↑ Differentiated pNENs from acinar cell carcinomas and normal 
pancreas. 

Thorns et al. 2014 
[59]

miR-642, miR-210 ↑ Differentiated pNEN tissue samples from the exocrine pancreas and 
pancreatic islets; correlated to MiB1 score and metastasis, respectively. 

miR-193b ↑ Differentiated pNEN patients (serum samples) from healthy controls.

Lee et al. 2015 [60] miR-196, miR-142-5p, miR-27b ↑ High MiR-196 expression - aggressive behavior, poor prognosis, 
decreased disease-free and overall survival in pNENs.

Gill et al. 2019 [61] miR-3653 ↑ Discriminated patients with distant metastases from patients with 
locoregional disease following surgical resection in pNENs.miR-4417, miR-574-3p, miR-664b-3p ↓

Zimmerman et al. 
2018 [62]

miR-21, miR-30a-5p, miR-320, miR-
331, miR-660

↑ Associated with the presence of metastases in GEP-NENs; a 
connection between metastatic disease and Ki-67 proliferation index 
through miR-150, miR-21 and miR-660 was found. let-7b, miR-150 ↓

Cavalcanti et al. 
2020 [63]

miR-96-5p ↑ Demonstrated that miR-96-5p’s levels increased with tumor grade in 
GEP-NENs.

Panarelli et al. 2019 
[64]

miR-375, miR-143, miR-7, miR-21 ↑ Expression of miR-615 and miR-92b can discriminate ileum and 
appendix NEN from rectum and pNEN, and ileum NEN can be 
differentiated from appendix NEN through miR-125b, miR-192 and 
miR-149, whereas miR-429 and miR-487b can separate rectal from 
pancreatic NEN.

miR-615, miR-92b, miR-125b, miR-192, 
miR-149, miR-429, miR-487b, miR-328

↓

miR: microRNA; GEP-NENs: gastro-entero-pancreatic neuroendocrine neoplasms, pNENs: pancreatic neuroendocrine neoplasms
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Somatostatin analogs treatment and microRNA 
dysregulation in gastro-entero-pancreatic neuroendocrine 
neoplasms

As already mentioned, miRNAs might act as biomarkers 
or even as targets for tumor directed therapy [73]. It is difficult 
to ascertain an association between GEP-NENs and miRNAs 
(Tables I and II); the matter is even worse concerning the role 
miRNAs play in modulating the effects of SSAs (Table III). 
The provided results are unfortunately highly heterogeneous. 
Nevertheless, there are still a number of miRNAs that may play 
a role in both GEP-NEN pathogenesis and responsiveness to 
SSAs therapy. 

Let-7 family
Bosch et al. [74] analyzed for the first time the individual 

effect of therapy with SSAs on the miRNA dysregulation 
pattern in small intestinal NENs (SI-NENs). Besides identifying 
a dysregulation in miRNA expression induced by treatment 
with SSAs (Table III), their analysis revealed that let-7c-5p 
was consistently upregulated whereas miRNA-3137 was 
consistently downregulated in every patient after SSAs therapy. 
As shown in Table I and Table II, two other studies investigated 
the role of let-7 family in NEN carcinogenesis and found 
that the downregulation of this miRNA family is involved in 
the metastatic process [62, 67]. Later, through fundamental 
research, Dossing et al. [23] demonstrated that SSAs therapy 

was responsible for the upregulation of 4 of the let-7 family 
members in lung and small intestine cells [23], which resulted 
in inhibition of the growth of the carcinoid cell lines. It seems 
that SSAs can reestablish let-7 family expression, thus probably 
overturning the pathways involved in NEN development. 
Let-7 miRNAs are involved in multiple biological processes 
including cell differentiation and it is well known that there 
is an association between let-7 dysregulation and different 
types of aggressive cancers. Specifically, they were widely 
identified as tumor suppressors that directly target miRNAs 
of genes involved in the cell cycle and in signal transduction 
pathways that lead to carcinogenesis. The loss of let-7 family 
members indicates poor survival in general [76]. However, the 
function of each let-7 family member is ill-defined, they seem 
to each have different functions, even in the same cell [76]. 
Moreover, let-7 levels are constantly changing due to genetic 
and epigenetic factors and it appears that both low and high 
levels of this family can lead to tumorigenesis, emphasizing 
the importance of its regulation [77]. Regarding NENs, they 
were found to target HMGA2, BACH1 and MMP1 and reduce 
the expression of these oncogenes that resulted in growth 
inhibition of carcinoid cell lines [67]. The let-7 miRNAs are 
fundamental performers in the insulin sensitivity and the 
glucose metabolic pathway through the inhibition of IGF-1R, 
a decisive target in the PI3K/mTOR signaling route [78, 79]. 
Let-7 was also found to induce autophagy by coordinately 

Table II. MicroRNA dysregulation in small intestinal neuroendocrine neoplasms

Reference miRNA Dysregulation Observations

Ruebel et al. 2010 [65] miR-183, miR-488, miR-
19a+b

↑ Compared matching primary ileal NENs and metastases; miR-133a - 
putative prognostic biomarker or therapeutic target.

miR-133a, miR-145, miR-146, 
miR-222, miR-10b

↓

Li et al. 2013 [66] miR-96, miR-182, miR-183, 
miR-196a

↑ Compared primary SI-NENs to their respective metastases and identified 
a correlation between tumor progression and miRNA dysregulation.

miR-31, miR-129-5p, miR-
133a, miR-215

↓

Dossing et al. 2015 [67] miR-129-5p, let 7 family ↓ (tumor tissue and cell lines): compared the expression profiles of primary 
tumors with their matched metastases and normal tissue;
Transfection of miR-129-5p and let-7 family led to growth inhibition of 
pulmonary and intestinal cell lines;

Miller et al. 2016 [68] miR-204-5p, miR-7-5p, 
miR-375

↑ The upregulated miRNAs distinguished between SI-NENs and healthy 
controls; the downregulated miRNAs - markers of metastatic disease. 

miR-1, miR-143-3p ↓

Heverhagen et al. 2017 [69] miR-7-5p, miR-96-5p ↑ Compared SI-NENs with control tissue sample;
MiR-7-5p – dysregulated in the sera of patients as well, proposed as 
biomarker;

miR-9-5p, miR-122-5p, 
miR-124-3p, miR-143-3p, 
miR-144-3p

↓

Mandal et al. 2017 [70] miR-96 ↑ Differentiated metastases (both liver and lymph nodes) from the primary 
tumor.miR-133a ↓

Bowden et al. 2017 [71] miR-22-3p, miR-21-5p ↑ (tumor tissue and serum samples): the dysregulated miRNAs  - putative 
biomarkers, associated with metastatic disease. miR-150-5p ↓

Arvidsson et al. 2017 [72] miR-375 ↑ Singled out ileal-NENs when compared to normal small intestine.

Malczewska et al. 2019 [49] miR-425-5p, miR-500a-5p, 
miR-125b-5p, miR-362-5p

↑ (serum samples): compared SI-NEN patients with healthy controls;
MiR-425-5p and 500a-5p - diagnostic markers;
MiR-125b-5p and miR-362-5p might predict residual or recurrent 
disease.

miR: microRNA; SI-NENs: small intestine neuroendocrine neoplasms.
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Table III. Impact on miRNA expression of somatostatin analogs treatment in neuroendocrine tumors

Reference MiRNA Dysregulation Observations

Bosch et al. 2019 [74] let-7c-5p, miR-24-3p, and miR-215-5p ↑ The miRNAs profiles of tumor tissues from eight patients 
(two tumor samples of the same patient prior to and after the 
initiation of treatment) were explored and the dysregulation 
pattern induced by SSAs in SI-NENs was dentified.

miR-3137, miR-10a-3p, miR-185-3p, miR-
339-5p, miR-371a-5p, miR-4436b- 5p, 
mir-4653-3p, mir-4793-3p, miR-619-5p, 
miR-4455, and miR-4656, miR-1226-3p

↓

Dossing et al. 2018 [23] let-7 family, miR-7, miR-148a ↑ Evaluated the regulative role of SSAs on miRNA expression 
profiles in two cell lines – lung (NCI-H727) and small intestine 
(CNDT2).

Li et al. 2015 [75] miR-96, miR-182, miR-183, miR-196a, 
miR-200a

↑ Explored the expression pattern of 9 miRNAs previously 
identified by them as having a role in tumor progression[66]. 
They first compared both untreated and SSAs-treated SI-
NEN patients with healthy donors and then further explored 
this therapy’s role in miRNA level regulation by comparing 
untreated with SSAs-treated patients. Apart from mir-200, 
the other 4 miRNAs showed a significant upregulation in the 
SSAs-treated group; the previously identified downregulated 
miRNAs remained essentially unaltered. 

suppressing components of an amino acid sensing pathway to 
repress mTORC1 and prevent its activation [80] (Fig 1). Others 
reinforced these results and have demonstrated that the let-7 
family can directly target and inhibit IGF-1 and IGF-1R. This 
leads to the inhibition of PI3K, and thus abolishes cell division, 
differentiation and survival [81, 82]. To sum up, the positive 
modulation of the let-7 family by SSAs targets inhibits the IGF-
1/PI3K signaling pathway, in addition to potentially inhibiting 
glucose nutrients in aiding the rapid growth of cancer cells. 
Through this mechanism, cancer cells are targeted on both 
survival signaling as well as their supply of nutrients [23]. 

MicroRNA-3137 and microRNA-185
As shown in Table III, besides let-7 family, Bosch et al. 

also identified that the downregulation of miRNA-3137 and 
miRNA-185 is induced by SSAs therapy in SI-NENs [74]. 
Concerning miRNA-3137, there is no distinct literature about 
its specific effects, but target analyses showed that it interacts 
with SSTR2, its downregulation induced by SSAs treatment 
being a possible mechanism through which this therapy 
exerts its antitumor properties. Regarding miRNA-185, in a 
rat pituitary adenoma GH3 cell line, it appears to function 
as an oncogene. Fan et al. [83] observed reduced expression 
of miRNA-185 and increased expression of SSTRs in SSAs 
responder growth hormone (GH)- secreting pituitary 
adenomas pituitary adenomas when compared to SSAs 
non-responder adenomas and normal pituitary glands. 
Their study also found that miRNA-185 targeted SSTR2 
mRNA to downregulate SSTR2 protein expression, promote 
proliferation, and inhibit apoptosis of tumor cells in the rat 
pituitary adenoma GH3 cell line [83]. This suggests that 
miRNA-185 might be involved in drug resistance to SSAs 
and pituitary adenoma tumorigenesis. However, most studies 
investigating miRNA-185 and its role in carcinogenesis, 
depicts it as a tumor suppressor, by blocking protein kinase B 
(AKT1)  in non-small cell lung carcinoma [84], by targeting 
vascular endothelial growth factor in breast cancer [85], or 
through influencing the WNT2B pathway in nasopharyngeal 
carcinoma in vitro [86]. Thus, downregulation of miRNA-185, 
such as downregulation of miRNA-3137, might be a direct 

effect of treatment with SSAs, or the antitumor properties 
of this therapy are mediated at least in part via miRNA-185 
downregulation. Further studies are required to confirm 
the effects of biotherapy with SSAs on miRNA-185 and 
miRNA-3137 and to explore the underlying mechanisms as 
well. 

MicroRNA-7 and microRNA-148a
In addition to the let-7 family and miRNA-3137, miRNA-7 

and miRNA-148a might be of interest as well. It is known that 
miRNA-7 is endocrine specific [87] and, as shown in Table I and 
Table II, highly present in NENs [23, 64, 68, 69, 72]. MiRNA-7 
has been involved as tumor suppressor in multiple cancer 
types, targeting numerous oncogenic signaling pathways. In 
glioblastoma, miRNA-7 inhibits both epidermal growth factor 
receptor (EGFR) and the AKT-mTOR signaling, by targeting 
upstream regulators, namely insulin receptor substrate 1and 2 
(IRS1 and IRS2) [88]. In addition, in hepatocellular carcinoma, 
it has been shown to inhibit cellular growth, invasion and 
migration in vitro and more importantly tumorigenesis and 
metastasis in vivo, through blocking PIK3CD. This structure 
is a decisive item of the PI3K/AKT pathway and functions 
downstream of EGFR [89]. Another essential aspect of the 
induction of miRNA-7 expression in cancer lies in the fact that 
miRNA-7, through its inhibitory actions on central cancerous 
signaling pathways, can increase sensitivity and overturn the 
otherwise chemo- or radiotherapy resistant tumor cells [90]. 
MiRNA-7 also directly targets IGF-1R in gastric cancer with 
significant inhibition of the metastatic potential being observed 
[91]. Regarding NENs, miRNA-7 appears to act mainly as an 
oncogene, as it is upregulated in several studies performed on 
GEP-NEN tissues. Dossing et al. [23] revealed an interesting 
and surprising finding, namely that miRNA-7 was further 
up-regulated by SSAs and able to inhibit the proliferation of 
NCI-H727 and CNDT2 carcinoid cells, indicating that it could 
mediate some of the growth inhibitory effect induced by SSAs 
therapy [23]. On the same note, inhibiting miRNA-7 led to the 
increased growth of the carcinoid cell lines. Both miRNA-7 and 
SSAs target the PI3K/AKT/mTOR pathway and influence IGF-1 
and IGF-1R, highlighting the significance of the up-regulation 
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of this miRNA by the SSAs treatment. Although it seems 
that miRNA-7 mostly acts as an oncogene in GEP-NENs, its 
upregulation by SSAs suggests that it may be able to invert its 
role to tumor suppressor at higher levels of expression. Other 
miRNAs have demonstrated a dual role in the same tumor 
model, such as miRNA-375 and the miRNA-191/245 cluster. In 
prostate cancer, depending on the cellular context and disease 
stage, miRNA-375 was found to act either as an oncomiR 
or tumor-suppressor miRNA [92]. The MiRNAs from the 
miRNA-191/245 cluster were shown to function as oncogenes 
in estrogen receptor positive cells and to impair tumor growth 
in estrogen receptor negative cells in breast cancer [93]. 

MiRNA-148a was identified to be endocrine specific as 
well, playing a major role in endocrine tumorigenesis [23]. 
Furthermore, therapy with SSAs was found to up-regulate 

miRNA-148a’s expression in endocrine cells, which makes 
this miRNA a possible predictive biomarker in GEP-NENs 
[23]. MiRNA-148a is aberrantly expressed in different types 
of malignant diseases, acting mostly as a tumor suppressor. Its 
upregulation, on the other hand, is linked only with glioma 
and osteosarcoma [94]. Xu et al. [95] investigated through 
fundamental research whether miRNA-148a is involved in 
regulating IGF-1R signaling activity in breast cancer. The 
study proved that miRNA-148a could halt the proliferation of 
breast cancer cells by downregulating IGF-1R through binding 
directly to its 3’UTR unit [95]. Therefore, the upregulation of 
miRNA-148a induced by SSAs therapy [23] might inhibit the 
PI3K signaling pathway through influencing growth factors like 
IGF-1 and its receptor IGF-1R  [26, 96], which might result in 
the induction of cell cycle arrest and apoptosis [26] in NENs.

Fig. 1 (created with BioRender.com). The mechanisms and pathways through which therapy with SSAs by 
modulating miRNAs expression, might control tumor growth. As illustrated in the figure, let-7 family, but also 
other miRNAs, were found to be dysregulated by SSAs therapy and might act mainly by targeting different 
key components of the PI3K/AKT/mTOR pathway to inhibit GEP-NENs progression. Normally, activation 
of mTOR through a cascade of activating or inhibiting processes, leads to increased tumor development and 
decreased autophagy. The upregulation of let-7 family (or the reestablishment of let-7 family expression), 
miR-7, miR-148 and miR-96, as well as the downregulation of miR-3137 and miR-185 induced by SSAs 
seems to interfere with this signaling pathway and lead to its inhibition. Let-7 family targets IGF1, IGF1R 
and components of an amino acid sensing pathway upstream of mTORC1. MiR-7 inhibits IGF1, IGF1R, 
IRS1&2 and PI3K (the latter through PI3KCD). Mir-148 targets IGF1 & IGF1R. MiR-96 normally directly 
targets AKT mRNA, leading to its downregulation and thus induction of mTOR pathway, but its upregulation 
possibly inverses its role and mir-96 might act as a tumor suppressor, inhibiting this pathway. By interacting 
directly with SSTR2, miR-3137 and miR-185 normally downregulate SSTR2 protein expression, but their 
downregulation possibly reverses this process.  IGF1R: insulin-like growth factor receptor; IGF1: insulin-like 
growth factor; PI3K: phosphoinositide 3 kinase; IRS1: insulin receptor substrate 1; IRS2: insulin receptor 
substrate 2; PIP3: phosphatidylinositol 3; PDK1: phosphoinositide-dependent kinase 1; AKT: protein kinase 
B; mTORC1: mammalian target of rapamycin complex 1; mTORC2: mammalian target of rapamycin complex 
2; TSC1: tuberous sclerosis complex 1; TSC2: tuberous sclerosis complex 2; SSAs: somatostatin analogs; 
SSTR2: somatostatin receptor 2; PI3KCD: phosphatidylinositol -4,5-biphosphate 3 kinase catalytic subunit 
delta; arrow: triggers; red line: inhibits; oncogenes: HMGA2, BACH1 and MMP1.
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MicroRNA-200
The miRNA-200 family consisting of miRNA-141, miRNA-

200a, miRNA-200b, miRNA-200c and miRNA-429, is one of 
the most studied regulators of the epithelial-mesenchymal 
transition (EMT) process [97, 98]. The miRNA-200 family 
has also been studied regarding endocrine carcinogenesis and 
SSAs therapy. Specifically, it was shown that miRNA-200a was 
independently upregulated in the liver metastases of SI-NEN 
patients, irrespective of SSAs treatment [75]. Firstly, Li et al. 
[66] investigated potential differences in miRNA expression 
between primary tumors, mesenteric and liver metastases in 
SI-NEN tissue specimens and identified 9 miRNAs that may 
have an impact on SI-NEN tumor progression [66] (Table II). 
Later on, by extending their analyses from tissue specimens 
to serum samples, they demonstrated that SSAs have a 
regulative role on miRNA levels [75]. The QRT-PCR analysis 
revealed that miRNA dysregulation pattern is also found when 
investigating blood samples and when comparing SSAs-treated 
and untreated patients to healthy controls. In this respect, 
downregulation of miRNA-31, miRNA-129-5p, miRNA-133a, 
and miRNA-215 was also identified in patients’ serum at all 
stages of disease. On the other hand, sustained upregulation of 
miRNA-196a, miRNA-182 and miRNA-200a was identified in 
patients with liver metastases alone. Moreover, when the panel 
of 9 miRNAs was evaluated in SSAs-treated versus untreated 
patients, the levels of miRNA-96, miRNA-182, miRNA-183, 
miRNA-196a were even higher in the SSAs-treated patients, 
regardless of stage of disease, as compared with untreated or 
healthy donors. Of note, they showed that in patients with 
liver metastases, miRNA-200a was upregulated irrespective of 
SSAs treatment. MiRNA-200 family directly targets the zinc 
finger E-box binding homeobox 1 and 2 (ZEB1 and ZEB2) 
transcription factors, which normally act as transcriptional 
repressors of E-cadherin, and inhibit the metastasis process 
[97, 98]. They act as important regulators of breast cancer 
progression, being responsible for maintaining mammary 
epithelial identity. Their downregulation is seen in more 
aggressive tumors, whereas their loss results in tumor cells 
acquiring mesenchymal characteristics including enhanced 
metastatic capacity [99]. Fundamental research showed 
that when treating medullary thyroid carcinoma cells with 
antagomiRs for miRNA-200b and miRNA-200c, the cells 
failed to express E-cadherin and gained an invasive profile 
[100]. In anaplastic thyroid carcinoma, miRNA-200a, -b and 
-c were shown to be downregulated, as a consequence of 
overexpression of EGF, indicating that this family may play 
a regulatory role in modulating EMT, but this time by EGF/
EGFR [101]. Using a mouse model of pNENs, Title et al. 
[102] demonstrated that, in a dosage-dependent regulation, 
even small changes in ZEB1 expressions are plentiful to 
produce a great impact on the EMT process. By removing or 
reexpressing members of the miR-200 family, the EMT process 
was promoted or halted, respectively, thus proving that they 
are important coordinators of the EMT axis [102]. However, 
there are discrepancies in literature and some studies showed 
that miRNA-200 family members can, on the contrary, enhance 
mammary tumor cell migration and/or metastasis [103]. 
It seems they act pleiotropically, fulfilling both the tumor 
suppressor and oncogene roles. Regarding SI-NENs, aberrant 

miRNA-200a expression has been detected in tissue specimens 
as well in patients’ serum [75]. However, contrary to what had 
been described before, miRNA-200a levels were exclusively and 
significantly higher in patients  who developed liver metastases 
when compared to healthy patients. Therefore, unexpectedly, 
miRNA-200a exhibited an atypical behavior, meaning that it 
was upregulated only in the liver metastases patients, with 
no significant difference between the untreated patients 
with primary tumors or lymph node metastases and healthy 
donors. Furthermore, this phenomenon was independent of 
SSAs treatment, with no considerable disparity between the 
treated and untreated patients. Yet, when comparing untreated 
patients with primary tumors or lymph node metastases with 
SSAs - treated patients with primary tumors or lymph node 
metastases, miRNA-200a showed significant upregulation 
induced by treatment. It seems as if miRNA-200a respects 
its anti-proliferative role up to the stage of metastasis (idea 
supported by the fact that it did not show upregulation in 
primary and lymph node metastases compared to healthy 
donors and by its upregulation induced by SSAs treatment in 
the aforementioned stages of disease) where its role is reversed. 
This suggests that, just like miRNA-7, miRNA-375 [92] and 
the miRNA-191/245 cluster [93], miRNA-200a might act as a 
tumor suppressor in the initial phases of SI-NEN progression, 
probably in relation to the EMT pathway, but, as the disease 
progresses and as a result of genetic and epigenetic changes, 
we experience an overturn of its role. 

MicroRNA-96
Not unexpectedly, the expression pattern of miRNA-96 

is heterogenous as well and it functions either as an 
oncomiR by promoting cellular growth, invasiveness and 
metastasis in breast cancer [104], pancreatic cancer [105] 
and hepatocarcinoma [106] or as a tumor suppressor in renal 
cell carcinoma [107], colorectal cancer [108] and lymphoma 
[109]. Regarding NENs, it seems that miRNA-96 mostly acts 
as an oncogene; its levels increase with tumor grade [63] and 
its regulation is influenced by SSAs therapy. It was shown to 
directly target at the 3’UTRs of AKT1S1 mRNA, leading to 
its downregulation and thus induction of mTOR activities 
[110, 111]. In addition, miRNA-96 also targets insulin-like 
growth factor binding protein 7 (IGFBP-7), a gene involved in 
regulating the availability of IGFs in tissue and in supervising 
IGF’s binding to its receptors. The IGFBP-7 protein is active in 
the vascular endothelium. Its interactions with IGFs and their 
receptors are thought to help stop the BRAF signaling pathway, 
which is involved in directing cell growth [112]. As previously 
shown in Tables I and II, miRNA-96 plays a prognostic role in 
GEP-NENs as it is correlated with tumor progression [66, 69, 
70]. Regarding biotherapy with SSAs, Mao et al. [112] noted 
a down-regulation of miRNA-96 in GH-secreting pituitary 
adenomas samples treated with lanreotide [112]. Similarly, after 
having demonstrated that miRNA-96 is involved in SI-NEN 
progression and metastasis, since its levels were significantly 
higher in primary tumor and liver metastases patients vs. 
healthy donors, Li et al. [75] showed that SSAs therapy further 
upregulated mir-96 in SI-NEN at all stages. This may imply 
that miRNA-96, when expressed at sufficiently high levels, 
might inverse its role and act as a tumor suppressor, following 
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the expression pattern of miR-7, miR-200, miR-375 and miR-
191/245 cluster [75, 92, 93]. 

MicroRNA-196a
Aberrant miRNA-196a expression has been observed in a 

broad spectrum of malignancies, with increasing evidence that 
it may serve as a diagnostic, prognostic or predictive biomarker, 
both tissue and blood based, in digestive tract cancers [113]. 
As indicated by Table I, the expression of miRNA-196a is 
correlated with increased proliferation in pNENs, as well 
as with aggressive behavior and metastasis. It has been 
demonstrated that miRNA-196a displays complementarity 
to the homeobox (HOX) gene cluster [114-116] and that it 
targets genes that play important roles in the WNT signaling 
pathway [117-119]. MiRNA-196 is highly expressed in NENs 
when compared to healthy controls both in tissue and serum 
specimens [66, 75]. Li et al. [75] studied the biological role of 
miRNA-196a target genes in midgut and lung carcinoid cells, 
demonstrating the importance of miRNA-196a in regulating 
HOXA9 and HOXB7 together with LRP4 and RSPO2, both 
at the transcriptional and translational levels [120]. This 
hints towards a possible implication of the WNT signaling 
pathway in NEN carcinogenesis. Although a regulatory effect 
on cell proliferation was not found, miRNA-196’s relationship 
with the HOX gene cluster and the WNT signaling pathway 
raised interest and deserves recognition. Concerning SSAs 
therapy, miRNA-196a’s expression was high in SI-NENs and 
SSAs therapy further upregulated its levels at different disease 
stages, similar to miRNA-96’s behavior, but the underlying 
mechanisms remain uncertain.  

CONCLUSIONS

There is an increasing interest in using miRNAs as predictive 
biomarkers in GEP-NENs. As far as we are aware, this is the 
first study that aimed at organizing the existing information 
on miRNAs and their role in mediating the antiproliferative 
effects of SSAs therapy in GEP-NENs. Unfortunately, the 
small number of studies and the highly heterogeneous results 
prevent us from drawing a definite conclusion. However, a 
possible association between let-7 and SSAs has been unveiled. 
Future challenges remain to reinforce this association or 
even illustrate the mechanisms through which, therapy with 
SSAs, by modulating let-7 family, can control tumor growth. 
The putative dual role of miRNA-7, miRNA-148, miRNA-96, 
and miRNA-200 (tumor suppressor or oncogene depending 
on the stage of the tumor or even their expression levels) 
strengthens the idea that more research on these miRNAs 
and a better understanding of the underlying mechanisms of 
action should be sought out before their eventual clinical usage. 
The fact that these miRNAs and SSAs therapy seem to target 
mTOR signaling pathway takes the clinician a step forward to 
understanding how and when to administer this treatment to 
obtain the best possible outcome and paves the way toward 
new targeted therapy.   

We know now that cancer, specifically neuroendocrine 
neoplasms, is far more complex, heterogeneous and intricate 
than imagined in 1971. The dream of using miRNAs 
as predictive tools in GEP-NENs is achievable only by 

understanding their biological function and overcoming the 
shortcomings through more validation studies on a greater 
number of patients and with standardized methods. Moreover, 
the miRNA field will need to further focus on whether different 
miRNAs indeed have specific activities in a particular cancer 
type or whether an algorithm based on a panel of miRNAs 
that will provide a multifaceted view of the disease, is required. 
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