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INTRODUCTION

Crohn’s disease (CD) is an 
inflammatory bowel disease 
(IBD) characterized by the 
presence of  mult ifactorial 
inflammation in the intestinal 
wall caused by a dysregulation 
of the immune system [1, 2]. 
Intermittent disease flares and 
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ABSTRACT

Background & Aims: Mucosal healing (MH) is associated with a stable course of Crohn’s disease (CD) which 
can be assessed by confocal laser endomicroscopy (CLE). To minimize the operator’s errors and automate 
assessment of CLE images, we used a deep learning (DL) model for image analysis. We hypothesized that DL 
combined with convolutional neural networks (CNNs) and long short-term memory (LSTM) can distinguish 
between normal and inflamed colonic mucosa from CLE images. 
Methods: The study included 54 patients, 32 with known active CD, and 22 control patients (18 CD patients 
with MH and four normal mucosa patients with no history of inflammatory bowel diseases). We designed and 
trained a deep convolutional neural network to detect active CD using 6,205 endomicroscopy images classified 
as active CD inflammation (3,672 images) and control mucosal healing or no inflammation (2,533 images). 
CLE imaging was performed on four colorectal areas and the terminal ileum. Gold standard was represented 
by the histopathological evaluation. The dataset was randomly split in two distinct training and testing 
datasets: 80% data from each patient were used for training and the remaining 20% for testing. The training 
dataset consists of 2,892 images with inflammation and 2,189 control images. The testing dataset consists of 
780 images with inflammation and 344 control images of the colon. We used a CNN-LSTM model with four 
convolution layers and one LSTM layer for automatic detection of MH and CD diagnosis from CLE images.
Results:  CLE investigation reveals normal colonic mucosa with round crypts and inflamed mucosa with 
irregular crypts and tortuous and dilated blood vessels. Our method obtained a 95.3% test accuracy with 
a specificity of 92.78% and a sensitivity of 94.6%, with an area under each receiver operating characteristic 
curves of 0.98.
Conclusions: Using machine learning algorithms on CLE images can successfully differentiate between 
inflammation and normal ileocolonic mucosa and can be used as a computer aided diagnosis for CD. Future 
clinical studies with a larger patient spectrum will validate our results and improve the CNN-SSTM model.

Key words: confocal laser endomicroscopy − inflammatory bowel disease − Crohn’s disease − convolutional 
neural network − deep learning.

Abbreviations: AUC: the area under the ROC curve; CD: Crohn’s disease; CLE: confocal laser endomicroscopy; 
eCLE: endoscope-based CLE system; CNN: convolution neural network; CRC: colorectal carcinoma; DL: 
deep learning; IBD: inflammatory bowel disease; LSTM: long short-term memory; MH: mucosal healing; 
ML: machine learning; pCLE: probe-based CLE; ROC: Receiver Operating Characteristics; Se: sensitivity; 
Sp: specificity. 

chronic inflammation lead to irreversible mucosal damage, 
intestinal complications, disability and even colitis-associated 
neoplasia [1]. 

Due to the risk of relapse, a long-term therapeutic strategy 
is necessary to achieve a good quality of life without surgery. 
The newest guidelines suggest that histological inflammation 
is predictive of future flares, with consequent decreased rates 
of sustained remission, and increased need for corticosteroids 
and colectomy [3]. Recent evidence suggests that mucosal 
healing (MH) is associated with a stable course of the disease, 
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less hospitalization, lower surgery rates and also lower risk for 
colorectal carcinoma (CCR) [4]. In CD, MH can be defined as 
the absence of erosions and ulcerations. It is characterized by 
complete healing of all ulcerative and inflammatory lesions as 
diagnosed by endoscopic examination. 

In order to assess inflammatory disease activity, MH is 
considered a more objective endpoint than clinical remission 
[5]. For MH assessment, regular endoscopic procedures, 
biopsy and histopathological evaluation are needed, but 
these procedures are associated with post biopsy bleeding, 
increased need for careful samples manipulation and increased 
time to diagnosis [6]. Novel endoscopic techniques such as 
confocal laser endomicroscopy (CLE) have recently been 
developed, providing the possibility of obtaining in vivo 
high-magnification images of the gut epithelium [7]. This 
technique allows real-time examination of the gastrointestinal 
mucosa at the cellular and subcellular level [8]. Because CLE 
is an operator-dependent technique, it requires a trained 
endoscopist to interpret images and give a diagnosis. Currently, 
the CLE diagnosis can have large variations between different 
experts [9]. Diagnostic errors can occur during examinations, 
because of subjectivity regarding interpretation, many 
seemingly similar features in the image, training or physical 
factors of the operator. 

Machine learning (ML) algorithms which analyze a very 
large number of existing medical images in order to identify 
specific common features and differences between normal and 
pathologic samples, improve the precision and efficiency of 
diagnosis [10] and create actionable prediction models [11]. 
Recent articles reported similar results in medical applications 
using the deep learning (DL) technique of Convolution Neural 
Networks (CNNs) [12]. For example, CNNs were applied to 
primary breast cancer grading [13, 14] and detection [15], 
and also to glioma grading [16]. Other authors used the DL 
technique, called stacked denoising auto-encoders to perform 
cell detection and segmentation in histopathological images 
[17]. With CLE images, we have previously used DL for 
automated CCR diagnosis [18]. Furthermore, the combination 
between CNN and long short-term memory (LSTM) was used 
in the literature to discover the time dependencies in image 
sequences [19, 20].

In the present study, we used a CNN-LSTM model with 
four convolution layers and one LSTM layer for automatic 
detection of MH and CD diagnosis from CLE images. We have 
used our large existing CLE image database to train the CNN 
algorithm to discriminate between normal and inflamed CLE 
ileocolonic images and then confirm MH. 

MATERIAL AND METHODS

Human Subjects and the CLE Procedure
We included 6,205 endomicroscopy grayscale images 

from 54 patients who were referred for ileocolonoscopy to the 
Gastro Unit of the Copenhagen University Hospital Herlev, 
Denmark. Fifty patients had a CD diagnosis and either active 
inflammation (32 patients) or mucosal healing (18 patients). 
Because mucosal healing represents a clinical goal for CD 
treatment, we considered the 18 mucosal healing patients as 
part of the control group. Four additional patients which were 
examined for adenoma surveillance but had no history of IBD 
were also included in the control group. Every person included 
in the study signed a written informed consent form. Prior to 
the procedure, the age, gender, current medication and surgery 
were recorded for each patient. None of the patients included 
in the study were pregnant or breast-feeding, had allergy to 
fluorescein or an impaired renal function or under 18 years 
of age. The patients’ ages ranged from 19 to 77 years, with a 
slight predominance of male gender. The patient population 
was described in more detail before [21].

An endoscope-based CLE system (eCLE) was used to 
perform ileocolonoscopy (EC-3837CILK; Pentax, Tokyo, 
Japan). The images were obtained from five areas of the 
gastrointestinal tract: rectum, left colon, transverse colon, right 
colon and terminal ileum. The final diagnosis was established 
by histopathology. All images were classified in two categories: 
normal and pathologic (characterized by inflammation) (Fig. 1).

The eCLE system has the CLE technology integrated into 
the distal tip of the endoscope. The CLE probe contains a 488 
nm-wavelength low-power blue laser to illuminate the tissue 
and capture a microscopic grey-scale image. To obtain confocal 
images, 5 ml of fluorescein sodium dye was administered 
intravenously before imaging. CLE generated serial images 

Fig. 1. Confocal laser endomicroscopy of the colon using intravenous fluorescein: A) normal colon with round shaped crypts (red arrow) 
and regular architecture of blood vessels (blue arrows); B), C) Crohn’s disease with tortuous blood vessels (yellow arrows), distorted 
crypts with fluorescein leakage (green arrow) and inflammatory cells infiltration (orange arrows).



Deep learning algorithm for Crohn’s disease� 61

J Gastrointestin Liver Dis, March 2021 Vol. 30 No 1: 59-65

down to 250 µm into the colon mucosa at an image resolution 
of 1024 x 1024 pixels and lateral resolution of 0.7 µm. The 
acquisition frequency was 0.8 images/second and the field of 
view was 475 x 475 µm [22]. The dataset consists of two types 
of CLE images (Fig. 1): normal (2,533) and pathologic, i.e. 
characterized by inflammation (3,672).

The CNN-LSTM model
To classify the medical images, we used a fusion method 

between CNN and LSTM in order to better utilize spatial and 
configuration information from 2D images than a CNN model 
alone. A CNN is a type of artificial neural network used to 
recognize and classify images. It is composed of convolutional 
layers alternating with pooling, batch normalization and fully 
connected layers (Fig. 2). The convolutional layers filter the 
input image by detecting patterns at different positions in the 
image. A pooling layer follows a convolution layer to down-
sample the feature map from the preceding convolution layer. 
To normalize the input layers, the batch normalization layers 
are used to adjust and scale the activations. Dropout is the 
method used to reduce overfitting and forces the model to 
learn multiple independent representations of the same data 
by randomly disabling neurons in the learning phase.

On the other hand, we used a LSTM network model as 
a type of recurrent neural network that is able to learn and 
remember over long sequences of input data. Our LSTM model 
consists of a series of 100 units. Each unit uses an input gate, a 
forget gate, an output gate and a memory cell. The input gate 
controls how much new information enters the unit and alters 
the state of the memory cell. The forget gate controls what to 
be remembered and what to be forgotten, the cell memory gate 
is a summation of the incoming information, and the output 
gate allows the state of the memory cell to have an effect on 
the current hidden state or other units [20]. Our LSTM model 
captures long-term temporal dynamics inside the feature 
matrix extracted by CNNs: each row of the feature matrix is a 

basic unit while the number of rows is the length of a sequence. 
So, the CLE images are converted into sequential data. Also, 
the long-term dependencies property of the LSTM is used to 
filter and fuse the rows of the feature matrix to improve the 
classification performance.

Model implementation and hyper parameter selection
Keras [23] with Google TensorFlow backend [24] was 

used to implement the CNN in this study, together with 
other scientific computing libraries as numpy [25] and scikit-
learn [26]. In order to implement the CNN-LSTM algorithm 
proposed in this study, the relevant hyper-parameters under 
the DL framework [23, 24] are shown in Table I. 

Our CNN-LSTM architecture contains 4 convolutional 
layers, 2 max-pooling layers, 2 batch normalization layers and 4 
dropout layers (Fig. 2).The rows of the feature matrix extracted 
by the CNN are fed into the LSTM network for feature fusion. 
The LSTM layer with 100 memory blocks is followed by 2 fully 
connected (dense) layers. The final dense layer with a sigmoid 
non-linear activation function outputs the inflammation or 
normal diagnosis. In order to reduce the overfitting, we applied 
three techniques: 1) rectified linear unit (ReLU) for non-linear 
activation function [27], 2) dropout for randomly deactivating 
a fraction of the units or connections in the network on each 
training iteration to generalize and avoid overfitting of training 
data [28], and 3) data augmentation to generate more training 
data from existing images by augmenting the samples via a 
number of random transformations so that the CNN-LSTM 
algorithm does not analyze the same image twice. The random 
transformations used on images were randomly rotation of 
images, randomly translations, shearing transformations, and 
randomly zooms in images [23].

Our method was trained using the Adam optimization 
algorithm [29] for 200 epochs on an NVIDIA Quadro K4200. 
The architecture on which we run the experiments is: Intel(R) 
Xeon(R) CPU E5-1620 v3 @ 3.50GHz, 32 GB RAM.

Fig. 2. The convolutional neural networks (CNN)- long short-term memory (LSTM) architecture

 Table I. Parameters of the proposed CNN-LSTM architecture

Layers Conv1 Conv2 Pool1 Conv3 Conv4 Pool2 Fully 
connected1

LSTM Fully 
connected2

Fully 
connected3

Kernel 3*3 3*3 2*2 3*3 3*3 2*2 - - - -

Channel 32 32 32 64 128 128 128 100 50 1

CNN: convolutional neural networks; LSTM: long short-term memory
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Image dataset
All images were classified accordingly to histopathological 

results. The dataset contains 6,205 grayscale CLE images 
as described in Table II. Of those, 5,081 images were used 
for training and 1,124 images for testing. For the training 
dataset, we used 2,892 images with inflammation and 2,189 
control images. For the test dataset we used 780 images with 
inflammation and 344 control images. The initial resolution 
was 1024 x 1024 pixels and we reduced it to 300x300px by 
manual cropping of images, in order to delete the information 
of equipment, patients and borders.

with normal diagnosis but predicted as inflammation. The 
“false negative” are the patients’ images with an inflammation 
diagnosis that are predicted as normal.

We used two diagnostic tools for the interpretation of 
probabilistic prediction for binary classification: the area under 
the Receiver Operating Characteristics (ROC) curve (AUC) and 
Precision-Recall curve [30]. The ROC curves show the trade-off 
between the true positive rate (4) and false positive rate (5) for 
a predictive model using different probability thresholds. The 
top left corner of the ROC curve plot is the ideal point (Fig. 4A). 
The Precision-Recall curves show the balance between the true 
positive rate and the positive predictive value for a predictive 
model using different probability thresholds (Fig. 4B) [31].

RESULTS

Confocal laser endomicroscopy imaging reveals the 
appearance of normal colonic mucosa as round crypts, with 
dark goblet cells due to the presence of mucin and a uniform 
caliber of blood vessels (Fig. 1). The crypts are situated at a 
relative equal distance from one another. In CD patients with 
mucosal inflammation, the architecture of the mucosa becomes 
abnormal due to the presence of inflammation cellularity that 
produces an irregular arrangement of crypts while the blood 
vessels are dilated and tortuous. The crypts can be distorted 
with an irregular and bright crypt lumen due to fluorescein 
leakage (Fig. 1B and C). 

On a normal ileum, intestinal villi have a regulated aspect, 
without any discontinuation of the epithelial layer which 
is uniform. Goblet cells appear dark due to the presence of 
mucin. Blood vessels have a uniform caliber, becoming visible 
after fluorescein administration. In CD, when inflammation 
is localized in the ileum, villi have micro-erosions which 
appear as a discontinuation of the epithelial layer. This layer 
has an irregular thickness alternating thick and narrow areas. 
Fluorescein leakage is present, and blood vessels have a 
tortuous and inequal caliber.

We used a CNN-LSTM model to detect the characteristic 
features in each CLE image. Our results show a final diagnosis 
accuracy of 95.30% and the AUC of 0.98. By comparison, when 
using only the CNN model the final diagnosis accuracy was 
92.79% and the AUC of 0.97. The diagnosis Se - the percentage 
of the true positives - was 92.78%, and the specificity (Sp) 

Table II. The distribution of the images and patients for training and 
testing datasets.

Image Datasets Inflammation Control Total 
Images/Patients

Training 2,892 /32 2,189 /22 5,081/54

Testing 780/32 344/22 1,124/54

Total 3,672/32 2,533/22 6,205/54

Visual analysis
For a better understanding of the mechanism of feature 

extraction and evolution of the algorithm, the results at 
each convolution and pool layer were visualized. Visualizing 
intermediate activations (outputs of intermediate layers) of 
our CNN-LSTM model consists of displaying the feature maps 
that are generated by the convolution and pooling layers in our 
CNN model, from input images of normal colonic mucosa 
and CD (Fig. 1). The feature maps show how an input image is 
decomposed into different filters learned by the network. Each 
channel encodes relatively independent features for normal 
and CD diagnosis (Fig. 3). 

Evaluation metrics
To analyze the performance of our CNN-LSTM model, 

we used the following metrics that are widely adopted in 
the medical diagnosis field: specificity (Sp), sensitivity (Se), 
the test accuracy. The “true positive” are the images with 
inflammation diagnosis and a CNN-LSTM model prediction 
of inflammation. The “true negative” are images with normal 
diagnosis and prediction. The “false positive” are images 

Fig. 3. The visualization of outputs of the intermediate layers of our CNN model for an image diagnosed as normal 
(A) and Crohn’s disease (B).
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– the percentage of true negatives - was 94.6%. All metrics 
computed for CNN-LSTM vs. CNN are summarized in Table 
III and showed the improvements achieved by using the CNNs 
together to LSTM models.

The comparison of the ROC curves for the two models 
(CNN-LSTM vs. CNN alone) reveals slightly better results for 
CNN-LSTM method (Fig. 4A). The same superior performance 
of the CNN-LSTM is shown in the display of the precision-
recall curves for the two models (Fig. 4B).

Table III. Evaluation metrics for classification.

Accuracy ROC AUC PR AUC Sp Se

CNN 92.79% 0.97 0.87 91.37% 89.46%

CNN-LSTM 95.30% 0.98 0.93 94.6% 92.78%

Accuracy ROC AUC PR AUC Sp Se

CNN 92.79% 0.97 0.87 91.37% 89.46%

CNN-LSTM 95.30% 0.98 0.93 94.6% 92.78%

CNN: convolutional neural networks; LSTM: long short-term memory; ROC: receiver operating 
characteristics; AUC: the area under the ROC curve; PR: Precision-Recall; Se: sensitivity; Sp: specificity.

DISCUSSION

Recently, CLE has emerged as an accurate method to 
identify defects of the mucosal barrier in patients with IBD. It 
can detect the loss of intestinal barrier function in the areas of 
cell shedding and identify mucosal leakage in macroscopically 
normal IBD [32]. 

Several studies concluded that CLE can reveal different types 
of focal lesions, similarly to histopathology [33, 34]. In addition, 
CLE has a distinct advantage over histopathology: several 
dynamic changes can be visualised in vivo, at the microscopic 
level (i.e. colonic crypt tortuosity, enlarged crypt lumen, hyper-
vascularization, micro-erosions, mononuclear cell infiltrates 
and fluorescein leakage), suggesting an impaired mucosal 
integrity and clinical inflammation relapse [21, 22]. Despite these 
advantages, CLE has its limitations; being an operator-dependent 
imaging technique, it needs an accurate image interpretation. 

Our results demonstrate that the DL techniques could 
be successfully applied to computer-aided disease diagnosis 
for detecting inflammation on endomicroscopy images. Our 
DL method improved the performance over traditional ML 
models. When applied for the classification of pediatric IBD, 
the traditional ML model achieved a diagnostic accuracy of 
82.7% and an AUC of 0.87 [35]. When we used a DL CNN-
LSTM method trained with 5,081 images and tested on 1,124 
images, the final test accuracy was 95.3% with AUC of 0.98. 

Our results are comparable or better than similar digital 
diagnosis studies. In the last years, several studies addressed 
the potential use of DL techniques for automated detection 
of pathologies from CLE images. A recent study presented an 
approach for the automatic detection of motion artifacts in 
probe- based confocal laser endomicroscopy (pCLE) images 
using a pre-trained Inception v3 network [9]. The authors 
obtained an AUC value of 0.92 and an overall accuracy of 
94.8%. In another recent study, the authors reported an 
accuracy of 80.77% when a CNN was used to classify CLE 
images with intestinal metaplasia, gastric metaplasia and 
esophageal neoplasia [36]. When comparing CNN capacity 
of grading severity of ulcerative colitis with human reviewers 
on endoscopic images, it has been demonstrated that the 
performance of DL was similar with that of experienced human 
reviewers. The CNN could distinguish endoscopic remission 
from moderate-to-severe disease with a Sn of 83%, Sp of 
96.0%, negative predictive value of 0.94 and positive predictive 
value of 0.87 [37]. Maeda et al. [38] obtained the following 
results: 91% accuracy, 74% sensitivity and 97% specificity in 
a study based on testing a CAD system potential to identify 

Fig. 4B. Comparison between CNN-LSTM vs. CNN: the precision/
recall curve. For abbreviations see Table III.

Fig. 4A. Comparison between CNN-LSTM vs. CNN: the ROC curve. 
For abbreviations see Table III.
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persistent histologic inflammation on images obtained during 
endocytoscopy in 187 ulcerative colitis patients [38].

By considering several normal and pathologic images from 
the same patient, our model differentiates between normal and 
pathological samples from the same patient as well as between 
pathological and normal images from different patients. By 
training the CNN-LSTM model on normal images from the 
same patient as well as other patients we took into account 
both intra- and inter- patient variances. Nonetheless the model 
can be further improved by increasing the number of patients. 

Our patient spectrum included the inflammation group of 
patients with active inflammation and CD diagnosis on one 
hand, and the control group composed of patients with mucosal 
healing and normal mucosa on the other hand. Most of the 
control patients (82%) were mucosal healing patients; therefore, 
our test is mostly focused on differentiating between actively 
inflamed and healing mucosa samples rather than between 
mucosal inflammation and healthy patients. Although, in the 
control group we combined mucosal healing and some healthy 
patients (18% of control patients) which could decrease the 
overall accuracy of the test, the application of our CNN-LSTM 
model resulted in over 95% diagnosis accuracy. Future studies 
will further stratify the patients in three (CD, mucosal healing 
and healthy patients) or more categories to delineate more 
subtle differences between each group. 

Further algorithm development will include prospective 
data. As required by DL technique, the image data set was 
analyzed retrospectively to be able to train the model on known 
diagnosis. Future development will include new images which 
will be digitally diagnosed with our algorithm and confirmed 
with traditional clinical diagnosis. Also, our DL analysis was 
not designed to differentiate between active and inactive 
inflammation. More stratified intestinal mucosa images are 
necessary to train the ML algorithm on more detailed features. 
Furthermore, in clinical practice, the eCLE technology was 
replaced by pCLE which is used through the biopsy channel 
of a conventional scope. Thus, these results should be validated 
on images obtained with the pCLE technology, as well. 

In clinical practice, our DL algorithm could be used as 
a digital diagnostic tool for MH assessment in IBD patients 
from real-time virtual biopsies during colonoscopy. The 
patient’s CLE image is run through our DL algorithm in 
real time and compared with our database of thousands 
of normal and pathologic cases. A diagnostic of normal or 
inflammatory condition is automatically generated by the 
computer algorithm independently of the operator’s experience 
and subsequently confirmed by a pathologist. Following the 
diagnosis, the gastroenterologists decide whether the current 
treatment is appropriate, or any modifications are needed. 
When MH is achieved, therapy can be de-escalated or even 
stopped. In our future work, we plan to collect more clinical 
data to increase our database and use different variations of 
CNN-LSTM architecture with transfer learning to further 
improve the performance of IBD classification.

CONCLUSION

In this study, we focused on finding a way to differentiate 
inflammation from normal colonic mucosa, in order to assess 

MH from CLE images. For this purpose, we developed a novel 
DL algorithm that is superior to the traditional ML methods 
as it does not require an initial description of visual features 
of medical images. The proposed CNN-LSTM model had a 
good performance in terms of the Sn (92.78%), Sp (94.6%), 
test accuracy (95.3%) and AUC (0.98).
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