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Ca2+-Activated K+ Channel KCa3.1 as a Double-Edged Sword in the 
Treatment of Inflammatory Bowel Disease

Susumu Ohya, Miki Matsui, Junko Kajikuri

Inflammatory bowel diseases 
(IBD) including ulcerative colitis 
(UC) and Crohn’s disease (CD) are 
chronic intestinal inflammation 
with abdominal symptoms, such 
as diarrhea, bloody stools, pain, 
and vomiting. Since chronic 
intestinal inflammation arises 
f rom abnormal  responses 
of the innate and adaptative 
immune system, studies have 
been focused on immune 
system-mediated mechanisms. 
Anti-inflammatory drugs and 
monoclonal antibodies targeting 
pro-inflammatory cytokines 
are successful treatment in 
improvement of IBD symptoms. 
Apart from that, the epithelial 
barrier function is essential to 
the maintenance of intestinal 
homeostasis. Recent studies 
have indicated that a defective 
epithelial barrier by homeostatic 
dysfunction of the intestinal 
epithelial cell (IEC) leaded to 
IBD symptoms  such as diarrhea 
and intestine ulcers [1].

Over 90 different K+ channel 
genes have been identified in 
the mammalian genome. Ca2+-
activated K+ (KCa) channels are 
classified into large-conductance 
KCa1.1,  smal l-conductance 
KCa2 .x ,  and intermediate-
conductance KCa3.1. For fine-
tuning Ca 2+ s ignal ing,  KCa 
channels are associated with 
voltage-gated and non-voltage-
gated Ca2+ channels as complexes 
in excitable and non-excitable 
cells [2]. KCa3.1 encoded by 
KCNN4 gene is also known as 
IK1, SK4, and IKCa1. In non-
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excitable cells such as immune cells, the activation of KCa3.1 
promotes Ca2+ signaling by increasing the electrical driving 
force for Ca2+ entry through non-voltage-gated Ca2+ channels 
[3]. Genetic silencing and pharmacological inhibition of KCa3.1 
have exhibited significant efficacy to suppress IBD symptoms 
by reducing inflammatory cytokine production from T cells 
in two different IBD model mice [4, 5]. Therefore, KCa3.1 is an 
attractive therapeutic target for autoimmune diseases including 
IBD, multiple sclerosis, and rheumatoid arthritis [6].

In IECs, KCa3.1 is a dominant basolateral K+ channel, and 
K+ efflux through KCa3.1 provides the driving force for Cl-  

secretion in association with fluid secretion [7, 8]. Therefore, 
KCa3.1 inhibition leads to a reduction in water content in 
the stools. KCa3.1 regulates intestine function by controlling 
Cl- secretion and water/salt balance. In the active stage of 
UC, a decrease in basolateral KCa3.1 expression and activity 
depolarizes the epithelial cell membrane potential and thereby 
suppresses the electrical driving force for electrogenic Na+ 

transport. Consequently, it results in impaired Cl- and water 
absorption across the inflamed mucosa [9, 10]. KCa3.1 channel 
opener enhances  the Cl- secretion in colonic epithelial cells 
through the cystic fibrosis transmembrane regulator (CFTR) 
and Ca2+-activated Cl- channel (TMEM16A/ANO1).  

In the previous study, Wölfel’s research group reported the 
involvement of KCa3.1 in epithelial ion transport and intestinal 
restitution [11]. They indicated that the expression levels of 
KCa3.1 transcript were high in IECs from IBD patients and 
that IEC migration was differentially regulated by KCa3.1 via 
the phosphoinositide 3-kinase (PI3K) signaling cascade. Their 
findings provided interesting insights into epithelial barrier 
dysfunction in chronic intestinal inflammation.

In this issue of the journal, Süss et al. [12] compared surgical 
samples from patients with IBD and uninflamed controls to 
determine the potential role of KCa3.1 as a diagnostic marker 
and/or therapeutic target. They showed the expression levels 
of KCa3.1 transcript and protein were elevated in IECs from 
CD and UC patients. Notably, in monolayers of IEC-18 cells 
pretreated with IFN-γ, FITC dextran efflux assay that is used 
as an index of transepithelial permeability unraveled that 
KCa3.1 openers stabilized epithelial barrier function in vitro 
by improving epithelial monolayer integrity. These suggest 
that KCa3.1 may have a protective role in the epithelial barrier 
in IBD. They concluded that KCa3.1 might serve a protective 
role in IBD and might be a novel target for IBD diagnosis and 
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treatment due to the beneficial effects of KCa3.1 openers on 
epithelial restitution. 

The following compounds are well-known as potent KCa3.1 
activators: 1-EBIO (1-ethylbenzimidazolin-2-one), DCEBIO 
(5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one), 
NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime), and SKA-
31 (naphtho[1,2-d]thiazol-2-ylamine). In this issue, 1-EBIO 
and SKA-31 were used as KCa3.1 openers; however, they exhibit 
similar potency for small-conductance KCa2.x. Recently, the 
selective KCa3.1 activator SKA-121, a derivative of SKA-31, was 
developed using Rosetta modeling [13]. SKA-121 may have an 
effective therapeutic profile for chronic intestinal inflammation 
caused by defective epithelial barrier function in IBD.

KCa3.1 gene expression is positively and negatively regulated 
by transcriptional factors [activator protein-1 (AP-1) (Fos/Jun 
heterodimers) and repressor element-1 silencing transcription 
factor (REST)] and by epigenetic modifications (DNA 
methylation, histone acetylation, and RNA interference) [3, 14-
16]. Indeed, histone deacetylase (HDAC) inhibitors suppressed 
intestinal inflammation in IBD [17]. Also, spliceosomal and 
proteasomal regulation contribute to the tuning of KCa3.1 
activity [18-21]. Further investigations will clarify the 
molecular mechanisms underlying KCa3.1 upregulation in 
IECs of IBD patients.

Recent studies provided the potential involvement of gut 
microbiota alternation in the pathogenesis of IBD [22, 23]. 
Microbiota dysbiosis is profoundly associated with impaired 
epithelial barrier function in IBD [24]. IECs function as a 
coordinator between microbiota and the immune system, 
and aberrant balance of fluid and electrolyte absorption 
and secretion influence not only barrier function but also 
microbiota composition and mucosal immune homeostasis in 
the luminal microenvironment. A further understanding will 
be  required to elucidate the role of KCa3.1 openers as therapeutic 
agents in the management of IBD in the improvement of barrier 
dysfunction-mediated microbiota dysbiosis.

A  recent study showed that increased intracellular K+ ([K+]
i) in tumor microenvironment reduced pro-inflammatory 
cytokine expression by inhibiting the AKT signaling pathway 
[25]. Therefore, the reduction of [K+]i by KCa3.1 openers 
may influence barrier function in IECs without changing 
the electrical driving force, and may, at least in part, be the 
enhancement of IEC proliferation and migration via the 
activation of PI3K/AKT signaling cascade.

In conclusion, Ca2+-activated K+ channel KCa3.1 is a 
double-edged sword in the inflammatory responses and 
impaired epithelial barrier function during the process of IBD 
development. KCa3.1 activation-induced rise of Ca2+ influx 
in inflammatory CD4+ T cells promotes pro-inflammatory 
cytokine expression and production. Additionally, KCa3.1 
plays an important role in the maintenance of intestinal 
homeostasis, and upregulated KCa3.1 in IECs of IBD patients 
protects impaired epithelial barrier function in IBD. Therefore, 
KCa3.1 inhibitors preventing inflammatory responses and 
KCa3.1 openers repairing aberrant epithelial barrier function 
are both possible therapeutic potentials for IBD. Based on the 
recent advances in IBD research, the barrier function, immune 
system, and intestinal microbiome are tripartite circuit of 
IBD pathogenesis. Further investigations will elucidate the 

integrated roles of these three components in the active and 
remission stages of IBD.
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